期刊文献+
共找到356,025篇文章
< 1 2 250 >
每页显示 20 50 100
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
1
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
2
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
3
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments
4
作者 Yeasul Kim Chaeeun Won Hwankuk Kim 《Computers, Materials & Continua》 2026年第1期247-274,共28页
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp... With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy. 展开更多
关键词 Encrypted traffic attack detection data sampling technique AI-based detection IoT environment
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
5
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Individual Software Expertise Formalization and Assessment from Project Management Tool Databases
6
作者 Traian-Radu Plosca Alexandru-Mihai Pescaru +1 位作者 Bianca-Valeria Rus Daniel-Ioan Curiac 《Computers, Materials & Continua》 2026年第1期389-411,共23页
Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods... Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results. 展开更多
关键词 Expertise formalization transformer-based models natural language processing augmented data project management tool skill classification
在线阅读 下载PDF
松嫩平原荒漠化的EOS-MODIS数据研究 被引量:29
7
作者 林年丰 汤洁 +2 位作者 斯蔼 李昭阳 汪雪格 《第四纪研究》 CAS CSCD 北大核心 2006年第2期265-273,共9页
文章应用EOS-MOD IS数据对松嫩平原的荒漠化问题进行了研究。首先计算出标准化植被指数(NDVI)和植被覆盖指数(VC I),反演求得荒漠化指数(D I),得到荒漠化面积;采用多种方法和复杂步骤,首次获得了松嫩平原碱质荒漠化、沙质荒漠化的面积,... 文章应用EOS-MOD IS数据对松嫩平原的荒漠化问题进行了研究。首先计算出标准化植被指数(NDVI)和植被覆盖指数(VC I),反演求得荒漠化指数(D I),得到荒漠化面积;采用多种方法和复杂步骤,首次获得了松嫩平原碱质荒漠化、沙质荒漠化的面积,分别为160.30×104hm2和50.56×104hm2,分别占该区面积的24.35%和7.84%;应用数字高程模型(DEM)对荒漠化的分布规律和成因进行了分析和讨论,指出松嫩平原以碱质荒漠化为主,当前荒漠化的发展程度已处于临界状态,对区域可持续发展构成了严重威胁,亟需采取行之有效的防治措施。 展开更多
关键词 松嫩平原 碱质荒漠化 沙质荒漠化 eos-modis数据 DEM模型
在线阅读 下载PDF
A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets
8
作者 Kwok Tai Chui Varsha Arya +2 位作者 Brij B.Gupta Miguel Torres-Ruiz Razaz Waheeb Attar 《Computers, Materials & Continua》 2026年第1期1410-1432,共23页
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d... Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested. 展开更多
关键词 Convolutional neural network data generation deep support vector machine feature extraction generative artificial intelligence imbalanced dataset medical diagnosis Parkinson’s disease small-scale dataset
在线阅读 下载PDF
应用EOS-MODIS卫星资料反演西北干旱绿洲的地表反照率 被引量:27
9
作者 张杰 张强 +1 位作者 郭铌 王建 《大气科学》 CSCD 北大核心 2005年第4期510-517,共8页
地表反照率是一个广泛应用于地表能量平衡、中长期天气预测和全球变化研究的重要参数,作者应用EOSMODIS卫星数据和目前发展的推算反照率比较完善的一种二向反射(BRDF)模型RossThickLiSparseR核算法(AMBRALS算法),对西北干旱绿洲区非均... 地表反照率是一个广泛应用于地表能量平衡、中长期天气预测和全球变化研究的重要参数,作者应用EOSMODIS卫星数据和目前发展的推算反照率比较完善的一种二向反射(BRDF)模型RossThickLiSparseR核算法(AMBRALS算法),对西北干旱绿洲区非均匀分布的地表反照率进行反演与分析,结果表明,应用该方法反演的地表参数与实际观测值基本接近。敦煌戈壁站的反演值与观测值的春、夏、秋季绝对误差最大为0.019,冬季为0.051,黑河绿洲实验站的反演值较观测值低0.019;绿洲、绿洲沙漠交界地带、戈壁和沙漠等反照率差别明显,并划分了区域内阶梯状反照率的变化值;另外,植被区四季反照率差异较大,夏季(8月)最小,冬(2月)、春季(4月)最大,与植被指数呈负相关关系,反照率的变化也充分体现了地表类型随气候变化的特性。 展开更多
关键词 地表反照率 eos-modis卫星 反演 西北干旱绿洲 非均匀地表
在线阅读 下载PDF
我国EOS-MODIS地面站建设的现状、问题与对策 被引量:15
10
作者 刘闯 文洪涛 +1 位作者 赵立成 张玮 《遥感信息》 CSCD 2003年第4期42-47,共6页
关键词 eos-modis 传感器 地球观测 地面站 卫星
在线阅读 下载PDF
EOS-MODIS数据监测暴雨洪涝灾害的技术方法 被引量:11
11
作者 梁益同 刘可群 +2 位作者 周守华 夏智宏 黄靖 《暴雨灾害》 2008年第1期64-67,共4页
简述了EOS-MODIS数据用于监测洪涝灾害的优点;采用EOS-MODIS的可见光和近红外波段的比值模式识别水体信息;通过比较位于江汉平原的长湖的2007年遥感估算面积与实际面积,对水体识别精度进行了检验。在此基础上,归纳出EOS-MODIS洪涝灾害... 简述了EOS-MODIS数据用于监测洪涝灾害的优点;采用EOS-MODIS的可见光和近红外波段的比值模式识别水体信息;通过比较位于江汉平原的长湖的2007年遥感估算面积与实际面积,对水体识别精度进行了检验。在此基础上,归纳出EOS-MODIS洪涝灾害监测流程。同时,通过一个实例分析了EOS-MODIS数据用于监测暴雨洪涝的效果。结果表明,EOS-MODIS数据可用于监测水体和暴雨洪涝灾害,且精度较高。最后,指出了EOS-MODIS数据监测洪涝灾害存在的若干问题。 展开更多
关键词 洪涝灾害 eos-modis数据 水体识别 暴雨
在线阅读 下载PDF
EOS-MODIS数据在青藏高原冰雪季节性变化信息自动提取中的应用研究 被引量:13
12
作者 刘闯 陈圣波 +1 位作者 Mo Dai 王正兴 《遥感信息》 CSCD 2001年第4期30-31,共2页
冰雪的动态变化是环境变化的重要指标。利用地球观测系统中分辨率成像光谱仪 (EOS- MODIS)数据监测冰雪的季节变化是目前国际上该领域研究的重要方向之一。本文利用中国科学院地理科学与资源研究所全球变化信息研究中心“中美联合 EOS- ... 冰雪的动态变化是环境变化的重要指标。利用地球观测系统中分辨率成像光谱仪 (EOS- MODIS)数据监测冰雪的季节变化是目前国际上该领域研究的重要方向之一。本文利用中国科学院地理科学与资源研究所全球变化信息研究中心“中美联合 EOS- MODIS地面站”的数据 ,选择青藏高原东部工布江达附近常年积雪区为试点地区 ,通过对 2 0 0 1年 4月、6月和 7月等三个不同时相 EOS- MODIS数据的处理和分析 ,探讨利用 EOS- MODIS自动提取冰雪空间分布数据的方法。研究结果表明 ,利用 EOS- MODIS可见光、近红外。 展开更多
关键词 eos-modis 冰雪 动态变化 青藏高原 季节变化 数据处理
在线阅读 下载PDF
应用6S模式对EOS-MODIS可见光到中红外波段的大气订正 被引量:19
13
作者 张杰 王介民 郭铌 《应用气象学报》 CSCD 北大核心 2004年第6期651-657,i004,共8页
应用 6S辐射传输模式对MODIS可见光到中红外波段的反射率进行大气订正 ,订正过程分两步进行 :首先设定地表为朗伯体 ,再应用二向反射模型BRDF进行订正 ,订正结果与美国MODIS研究组应用MAS实验结果进行比较表明 ,两者变化趋势是一致的 ;... 应用 6S辐射传输模式对MODIS可见光到中红外波段的反射率进行大气订正 ,订正过程分两步进行 :首先设定地表为朗伯体 ,再应用二向反射模型BRDF进行订正 ,订正结果与美国MODIS研究组应用MAS实验结果进行比较表明 ,两者变化趋势是一致的 ;经过臭氧、水汽、气溶胶等散射吸收订正 ,对于一定范围的反射率 ,大气订正使植被区红光波段反射率ρ1 降低、近红外波段反射率 ρ2 增加 ,蓝光波段反射率 ρ3降低 ;大气订正后 ,归一化植被指数INDV较大气订正前有所增加 ,增加的最大值为 0 .1 0 4 ,抗土壤 大气植被指数IEV值略有减小 ,减小的最大值为 0 .0 0 展开更多
关键词 大气 eos-modis 辐射传输模式 订正 反射率 水汽 近红外波段 中红外波段 二向反射模型 MAS
在线阅读 下载PDF
应用EOS-MODIS卫星资料推算西北雨养农业区能量通量 被引量:4
14
作者 张杰 杨兴国 李巧珍 《干旱地区农业研究》 CSCD 北大核心 2005年第5期226-231,共6页
应用定西地区的气象资料和4次EOS-MODIS卫星资料,对典型的西北半干旱雨养农业区的基本地表特征参数进行反演,并在此基础上对各能量通量进行估算,进而分析了各通量的季节变化。结果表明,应用卫星数据估算的通量与净辐射之比与实际观测值... 应用定西地区的气象资料和4次EOS-MODIS卫星资料,对典型的西北半干旱雨养农业区的基本地表特征参数进行反演,并在此基础上对各能量通量进行估算,进而分析了各通量的季节变化。结果表明,应用卫星数据估算的通量与净辐射之比与实际观测值基本接近,绝对误差在10%以内,其空间分布基本反映了当地的实际情况;土壤热通量、显热通量以及潜热通量的季节变化基本表现为冬季最小,其次是秋季,夏春两季最大;通量四季变化也呈现出不均匀的分布特性,频率分布范围较宽,体现了该区域的地形、地貌以及下垫面复杂的特征。 展开更多
关键词 能量通量 eos-modis卫星资料 雨养农区
在线阅读 下载PDF
基于EOS-MODIS的广西全境石漠化信息提取方法研究 被引量:12
15
作者 周欣 吴虹 党宇宁 《化工矿产地质》 CAS 2008年第4期219-222,233,共5页
喀斯特石漠化是发生在亚热带岩溶地貌中的土地退化过程,其显著特征为土壤严重侵蚀、基岩裸露、植被退化、土地生产力下降。石漠化既制约当地的经济发展,又可能引起小环境气候的恶化,同时也破坏生物多样性,危及生态环境自然景观。因此,... 喀斯特石漠化是发生在亚热带岩溶地貌中的土地退化过程,其显著特征为土壤严重侵蚀、基岩裸露、植被退化、土地生产力下降。石漠化既制约当地的经济发展,又可能引起小环境气候的恶化,同时也破坏生物多样性,危及生态环境自然景观。因此,研究石漠化,分析其成因和分布特征对喀斯特地区的防灾减灾以及可持续发展具有十分重大的意义。EOS-MODIS数据所固有的优点(获取便捷、覆盖范围广、成像周期短),使其成为理想的大范围石漠化研究的潜在遥感数据源。 展开更多
关键词 eos-modis 喀斯特石漠化 信息提取
在线阅读 下载PDF
应用EOS-MODIS数据进行林火监测的初步探索 被引量:27
16
作者 蒋岳新 《森林防火》 2002年第4期25-29,共5页
本文简要的介绍了美国EOS系列卫星、EOSMODIS数据及其该数据的遥感应用 ,从理论上分析了EOSMODIS数据林火信息的识别和提取的原理及方法 ,介绍了几种MODIS的林火监测产品实例 ,并与应用AVHRR林火监测进行对比。
关键词 遥感技术 林火信息提取 应用 eos-modis数据 林火监测
在线阅读 下载PDF
EOS-MODIS数据在草地资源监测中的应用进展综述 被引量:38
17
作者 严建武 李春娥 +1 位作者 袁雷 陈全功 《草业科学》 CAS CSCD 2008年第4期1-9,共9页
简要介绍了美国对地观测系列卫星(Earth Observing Satellites,EOS)及其中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)数据在遥感方面的应用,总结了近年来MODIS数据在草地资源监测领域的研究成果,指出了利... 简要介绍了美国对地观测系列卫星(Earth Observing Satellites,EOS)及其中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)数据在遥感方面的应用,总结了近年来MODIS数据在草地资源监测领域的研究成果,指出了利用MODIS数据进行监测与其他遥感卫星监测有不可比拟的优越性,着重介绍了MODIS数据在草地上进行植被动态、雪灾监测、火灾监测、病虫害监测等领域监测中应用的一般原理,并与应用甚高分辨率辐射仪(The Advanced Very High Resolution Radiometer,AVHRR)遥感监测进行对比。从理论上、技术上和实践上证明MODIS数据在各领域监测中的监测能力及可行性,目的在于为MODIS遥感监测工作提供一种有益的启示,以期为及时、准确监测预报提供借鉴和参考。 展开更多
关键词 EOS卫星 MODIS数据 草地资源 监测
在线阅读 下载PDF
EOS-MODIS资料在森林火灾监测中的应用研究 被引量:23
18
作者 张树誉 景毅刚 《灾害学》 CSCD 2004年第1期58-62,共5页
对用MODIS资料进行火情监测的原理及通道特性进行厂分析,提出了一种用于林火监测的资料处理流程和量化判识指标。
关键词 MODIS 原理 森林火情监测 处理流程 判识指标
在线阅读 下载PDF
EOS-MODIS卫星数据的农业应用现状及前景分析 被引量:23
19
作者 周清波 刘佳 +1 位作者 王利民 邓辉 《农业图书情报学刊》 2005年第2期202-205,共4页
农业是遥感技术应用的一个重要领域。EOS -MODIS卫星的发射为农业遥感提供了又一个重要的信息源。本文详细地分析了MODIS的数据特点及适用领域 ,回顾和评价了MODIS数据在农作物分类、长势和灾害监测、土地利用等领域的应用状况 。
关键词 EOS-MODLS传感器 数据特点分析 农业应用评价
在线阅读 下载PDF
利用EOS-MODIS数据提取作物冠层温度研究 被引量:4
20
作者 侯英雨 孙林 +1 位作者 何延波 王石立 《农业工程学报》 EI CAS CSCD 北大核心 2006年第12期8-12,T0002,共6页
利用EO S-M OD IS遥感数据,基于线性混合模型,提出了一种新的作物冠层温度反演方法。首先,利用EO S-M OD IS数据提取了陆地表面温度LST和植被指数NDV I。然后,假定地表只有植被和裸地两种组分,通过植被指数温度V I-T s方法来估算裸土的... 利用EO S-M OD IS遥感数据,基于线性混合模型,提出了一种新的作物冠层温度反演方法。首先,利用EO S-M OD IS数据提取了陆地表面温度LST和植被指数NDV I。然后,假定地表只有植被和裸地两种组分,通过植被指数温度V I-T s方法来估算裸土的组分温度,作物冠层温度通过线性混合模型来求解。为了验证反演的地表温度和冠层温度的精度,把反演的地表温度与NA SA M OD IS地表温度产品进行差值运算,在差值图像中90%以上的像元灰度值分布在-1和1之间,像元灰度的平均值小于0.5;同时在河北固城农业气象试验站对冬小麦冠层温度进行同步观测,通过与反演的冠层温度进行比较,其误差在±1.5℃左右。结果表明,文中所提出的作物冠层温度反演方法精度较高,其结果能够满足有关作物生长模型以及土壤水分模型对输入参数的精度要求。 展开更多
关键词 作物冠层温度 地表温度 线性混合模型 VI—Ts方法 EOS—MODIS数据
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部