An integration technique based on use of Monte Carlo Integration is proposed for Method of Moments solution of Electric Field Integral Equation. As an example numerical analysis is carried out for the solution of the ...An integration technique based on use of Monte Carlo Integration is proposed for Method of Moments solution of Electric Field Integral Equation. As an example numerical analysis is carried out for the solution of the integral equation for unknown current distribution on metallic plate structures. The entire domain polynomial basis functions are employed in the MOM formulation which leads to only small number of matrix elements thus saving significant computer time and storage. It is observed that the proposed method not only provides solution of the unknown current distribution on the surface of the metallic plates but is also capable of dealing with the problem of singularity efficiently.展开更多
The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the follow...The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the following aspects: Firstly, two different methods, which are same in essence: the method of the unknown induction current expansion and the method of the integral operator expansion are used to solve the EFIE, Secondly, how to choose the wavelet basis function in wavelet MoM. For two dimension problem, the wavelet MoM is employed and compared with the conventional MoM in CPU time, computational precision and matrix spareness etc. Here, the fast wavelet transform (FWT) is used to compute the matrix elements rapidly and efficiently. Typical numerical results are presented to illustrate the concepts.展开更多
将提升类小波变换(lifting wavelet-like transform,LWLT)应用于矩量法(method of moment,MOM)快速求解电场积分方程(electric fieldintegral equation,EFIE),对生成的稀疏化线性系统采用模基参数估计(model based parameter esti matio...将提升类小波变换(lifting wavelet-like transform,LWLT)应用于矩量法(method of moment,MOM)快速求解电场积分方程(electric fieldintegral equation,EFIE),对生成的稀疏化线性系统采用模基参数估计(model based parameter esti mation,MBPE)算法求解,可获得小波域的宽带解,结合小波逆变换,最终实现目标电磁散射特性的宽频分析。通过不同三维散射体的计算分析,验证了算法的正确性。与传统模基参数估计算法相比,所提算法在计算时间和内存耗费上均有很大改善。展开更多
文摘An integration technique based on use of Monte Carlo Integration is proposed for Method of Moments solution of Electric Field Integral Equation. As an example numerical analysis is carried out for the solution of the integral equation for unknown current distribution on metallic plate structures. The entire domain polynomial basis functions are employed in the MOM formulation which leads to only small number of matrix elements thus saving significant computer time and storage. It is observed that the proposed method not only provides solution of the unknown current distribution on the surface of the metallic plates but is also capable of dealing with the problem of singularity efficiently.
文摘The recently developed theory of wavelet applied in the Method of Moments (MoM) to solve the electromagnetic field integral equation is presented in this paper. For one dimension problem, we briefly discuss the following aspects: Firstly, two different methods, which are same in essence: the method of the unknown induction current expansion and the method of the integral operator expansion are used to solve the EFIE, Secondly, how to choose the wavelet basis function in wavelet MoM. For two dimension problem, the wavelet MoM is employed and compared with the conventional MoM in CPU time, computational precision and matrix spareness etc. Here, the fast wavelet transform (FWT) is used to compute the matrix elements rapidly and efficiently. Typical numerical results are presented to illustrate the concepts.
文摘将提升类小波变换(lifting wavelet-like transform,LWLT)应用于矩量法(method of moment,MOM)快速求解电场积分方程(electric fieldintegral equation,EFIE),对生成的稀疏化线性系统采用模基参数估计(model based parameter esti mation,MBPE)算法求解,可获得小波域的宽带解,结合小波逆变换,最终实现目标电磁散射特性的宽频分析。通过不同三维散射体的计算分析,验证了算法的正确性。与传统模基参数估计算法相比,所提算法在计算时间和内存耗费上均有很大改善。