In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classificati...In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.展开更多
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,...Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,given their global search capabilities and ability to locate multiple roots of a NES simultaneously within one run.Currently,the majority of research on using EAs to solve NESs focuses on transformation techniques and improving the performance of the used EAs.By contrast,problem domain knowledge of NESs is investigated in this study,where we propose the incorporation of a variable reduction strategy(VRS)into EAs to solve NESs.The VRS makes full use of the systems of expressing a NES and uses some variables(i.e.,core variable)to represent other variables(i.e.,reduced variables)through variable relationships that exist in the equation systems.It enables the reduction of partial variables and equations and shrinks the decision space,thereby reducing the complexity of the problem and improving the search efficiency of the EAs.To test the effectiveness of VRS in dealing with NESs,this paper mainly integrates the VRS into two existing state-of-the-art EA methods(i.e.,MONES and DR-JADE)according to the integration framework of the VRS and EA,respectively.Experimental results show that,with the assistance of the VRS,the EA methods can produce better results than the original methods and other compared methods.Furthermore,extensive experiments regarding the influence of different reduction schemes and EAs substantiate that a better EA for solving a NES with more reduced variables tends to provide better performance.展开更多
基金funded by the Ministry of Higher Education of Malaysia,grant number FRGS/1/2022/ICT02/UPSI/02/1.
文摘In recent years,feature selection(FS)optimization of high-dimensional gene expression data has become one of the most promising approaches for cancer prediction and classification.This work reviews FS and classification methods that utilize evolutionary algorithms(EAs)for gene expression profiles in cancer or medical applications based on research motivations,challenges,and recommendations.Relevant studies were retrieved from four major academic databases-IEEE,Scopus,Springer,and ScienceDirect-using the keywords‘cancer classification’,‘optimization’,‘FS’,and‘gene expression profile’.A total of 67 papers were finally selected with key advancements identified as follows:(1)The majority of papers(44.8%)focused on developing algorithms and models for FS and classification.(2)The second category encompassed studies on biomarker identification by EAs,including 20 papers(30%).(3)The third category comprised works that applied FS to cancer data for decision support system purposes,addressing high-dimensional data and the formulation of chromosome length.These studies accounted for 12%of the total number of studies.(4)The remaining three papers(4.5%)were reviews and surveys focusing on models and developments in prediction and classification optimization for cancer classification under current technical conditions.This review highlights the importance of optimizing FS in EAs to manage high-dimensional data effectively.Despite recent advancements,significant limitations remain:the dynamic formulation of chromosome length remains an underexplored area.Thus,further research is needed on dynamic-length chromosome techniques for more sophisticated biomarker gene selection techniques.The findings suggest that further advancements in dynamic chromosome length formulations and adaptive algorithms could enhance cancer classification accuracy and efficiency.
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
基金This work was supported by the National Natural Science Foundation of China(62073341)in part by the Natural Science Fund for Distinguished Young Scholars of Hunan Province(2019JJ20026).
文摘Nonlinear equations systems(NESs)are widely used in real-world problems and they are difficult to solve due to their nonlinearity and multiple roots.Evolutionary algorithms(EAs)are one of the methods for solving NESs,given their global search capabilities and ability to locate multiple roots of a NES simultaneously within one run.Currently,the majority of research on using EAs to solve NESs focuses on transformation techniques and improving the performance of the used EAs.By contrast,problem domain knowledge of NESs is investigated in this study,where we propose the incorporation of a variable reduction strategy(VRS)into EAs to solve NESs.The VRS makes full use of the systems of expressing a NES and uses some variables(i.e.,core variable)to represent other variables(i.e.,reduced variables)through variable relationships that exist in the equation systems.It enables the reduction of partial variables and equations and shrinks the decision space,thereby reducing the complexity of the problem and improving the search efficiency of the EAs.To test the effectiveness of VRS in dealing with NESs,this paper mainly integrates the VRS into two existing state-of-the-art EA methods(i.e.,MONES and DR-JADE)according to the integration framework of the VRS and EA,respectively.Experimental results show that,with the assistance of the VRS,the EA methods can produce better results than the original methods and other compared methods.Furthermore,extensive experiments regarding the influence of different reduction schemes and EAs substantiate that a better EA for solving a NES with more reduced variables tends to provide better performance.