Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede...Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede to an automated fingerprint system for E-learning. The idea is to apply back propagation algorithm on a multilayer perceptron during the training stage. One of the advantages of this technique is the use of a hidden layer which allows the network to make comparison by calculating probabilities on template which are invariant to translation and rotation. Results come both from the NIST special database 4 and a local database, and show that a proposed method gives good results in some cases.展开更多
Improving learning outcome has always been an important motivating factor in educational inquiry. In a blended learning environment where e-learning and traditional face to face class tutoring are combined, there are ...Improving learning outcome has always been an important motivating factor in educational inquiry. In a blended learning environment where e-learning and traditional face to face class tutoring are combined, there are opportunities to explore the role of technology in improving student’s grades. A student’s performance is impacted by many factors such as engagement, self-regulation, peer interaction, tutor’s experience and tutors’ time involvement with students. Furthermore, e-course design factors such as providing personalized learning are an urgent requirement for improved learning process. In this paper, an artificial neural network model is introduced as a type of supervised learning, meaning that the network is provided with example input parameters of learning and the desired optimized and correct output for that input. We also describe, by utilizing e-learning interactions and social analytics how to use artificial neural network to produce a converging mathematical model. Then students’ performance can be efficiently predicted and so the danger of failing in an enrolled e-course should be reduced.展开更多
In order to manage all kinds of network security devices and software systems efficiently, and make them collaborate with each other, the model for an open network security management platform is presented. The feasib...In order to manage all kinds of network security devices and software systems efficiently, and make them collaborate with each other, the model for an open network security management platform is presented. The feasibility and key implementing technology of the model are expatiated. A prototype system is implemented to validate it.展开更多
The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This pap...The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.展开更多
In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change ...In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change rate of normalized medal frequency. Secondly, the profile and layer of the damaged member is also determined by the pmbabilistic neural network with input of the normalized damage-signal index. Finally, the damage extent is determined by the back propagation neural networks with input of the squared change rate of modal frequency. So the size of the network and the training time can be reduced greatly. All these networks are trained with simulated data obtained from the finite element model of an experiment model. Then these trained neural networks are examined with data obtained from impulse tests on the experiment model. The experiment results show that the trained neural networks are able to detect the damaged member with reasonable accuracy.展开更多
A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i...A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.展开更多
The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control meth...The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform.展开更多
In this paper, the control method for fixed offshore platforms using semi-active tuned liquid column damper (TLCD) is presented. The equation of motion for the platform-TLCD control system is given and the semi-active...In this paper, the control method for fixed offshore platforms using semi-active tuned liquid column damper (TLCD) is presented. The equation of motion for the platform-TLCD control system is given and the semi-active control strategy is established. A back propagation artificial neural network (ANN) is used to adjust the orifice opening of TLCD because of the nonlinear motion of liquid in TLCD. The effectiveness of the control method is verified by numerical examples.展开更多
The development of Internet technology has brought convenience to the development of education and teaching,and has also changed the traditional methods and means of education and teaching. The construction of an inte...The development of Internet technology has brought convenience to the development of education and teaching,and has also changed the traditional methods and means of education and teaching. The construction of an integrated network teaching platform based on Internet technology brings new opportunities for the development of higher education. Taking the construction of the integrated network teaching platform of Northwest A&F University as an example,the current situation and existing problems in the construction of the integrated network teaching platform of the Northwest A&F University are explained. By proposing the promotion strategies for the application of the integrated network teaching platform,the construction of the integrated network teaching platform is improved,thereby facilitating the online and offline mixed teaching and further promoting the improvement of teaching level and teaching effect.展开更多
A small size ubiquitous healthcare system for the home care of elderly persons was designed and implemented.The system comprised a wireless sensor network node,base station and server computer for the continuous monit...A small size ubiquitous healthcare system for the home care of elderly persons was designed and implemented.The system comprised a wireless sensor network node,base station and server computer for the continuous monitoring of ECG signals.ECG data,an important vital sign that is commonly used in clinical and trauma care,were displayed on a graphical user interface (GUI) by transferring the data to a PDA or a terminal PC.This data transfer was accomplished through a base-station connected to a server computer using TCP/IP.Real-time ECG data of elderly persons or patients,as well as historical data,can also be retrieved and played back to assist the diagnosis.The ubiquitous healthcare system presented in this study can effectively reduce social medical expenses,which will increase greatly in the aging society.展开更多
As next generation communication technologies emerge,new high data rate applications and high-definition large-screen video streaming have become very popular.As a result,network traffic has been increasing so much th...As next generation communication technologies emerge,new high data rate applications and high-definition large-screen video streaming have become very popular.As a result,network traffic has been increasing so much that existing backhaul networks soon will not be able to support all traffic demands.To support these needs in future 6G mobile systems,the establishment of an additional backhaul wireless network is considered essential.As one of the solutions,a wireless backhaul network based on an aerial platform has been proposed.In order to explore the potential of aerial platforms as wireless backhaul networks,in this paper,the categories for wireless backhaul networks based on aerial platforms are investigated.This paper includes a survey of the definitions and characteristics of low altitude platforms(LAPs)and high altitude platforms(HAPs),as well as channel models according to the atmosphere.For wireless backhaul network designs based on aerial platforms,altitude and platform selection options,deployment options,energy issues,and security based on target location and performance were considered in the analysis and investigation.展开更多
文摘Fingerprint recognition is a mature biometric technique for identification or authentication application. In this work, we describe a method based on the use of neural network to authenticate people who want to accede to an automated fingerprint system for E-learning. The idea is to apply back propagation algorithm on a multilayer perceptron during the training stage. One of the advantages of this technique is the use of a hidden layer which allows the network to make comparison by calculating probabilities on template which are invariant to translation and rotation. Results come both from the NIST special database 4 and a local database, and show that a proposed method gives good results in some cases.
文摘Improving learning outcome has always been an important motivating factor in educational inquiry. In a blended learning environment where e-learning and traditional face to face class tutoring are combined, there are opportunities to explore the role of technology in improving student’s grades. A student’s performance is impacted by many factors such as engagement, self-regulation, peer interaction, tutor’s experience and tutors’ time involvement with students. Furthermore, e-course design factors such as providing personalized learning are an urgent requirement for improved learning process. In this paper, an artificial neural network model is introduced as a type of supervised learning, meaning that the network is provided with example input parameters of learning and the desired optimized and correct output for that input. We also describe, by utilizing e-learning interactions and social analytics how to use artificial neural network to produce a converging mathematical model. Then students’ performance can be efficiently predicted and so the danger of failing in an enrolled e-course should be reduced.
文摘In order to manage all kinds of network security devices and software systems efficiently, and make them collaborate with each other, the model for an open network security management platform is presented. The feasibility and key implementing technology of the model are expatiated. A prototype system is implemented to validate it.
文摘The micromation and precision of the Micro-Electromechanical System demand that its manufacturing, measuring and assembling must work in a micro-manufacturing platform with good ability to isolate vibrations. This paper develops a vibration isolation system of micro-manufacturing platform. The brains of many kinds of birds can isolate vibrations well, such as woodpecker’s brain. When a woodpecker pecks the wood at the speed as 1.6 times as the velocity of sound, its brain will tolerate the wallop 1 500 times of the weight of itself without any damage. The isolation mechanics and organic texture of woodpecker’s brain that has good isolation characteristics were studied. A structure model of vibration isolation system for the micro-manufacturing platform is established based on the bionics of the bird’s brain vibration isolation mechanism. In order to isolate effectively the high frequency vibrations from the ground, a rubber layer is used to isolate vibrations passively between the micro-manufacturing platform’s pedestal and the ground. This layer corresponds to the cartilage and muscles in the outer meninges of the bird’s brain. The active vibration isolation technique is adopted to isolate vibrations between the micro-manufacturing platform and the pedestal. Air springs are used as elastic components, which correspond to the interspaces between the outer meninges and the encephala of the bird’s brain. Actuators are made of giant magnetostrictive material, and it corresponds to the nerves and neural muscles linking the meninges and the encephala. The actuators and air springs are arranged vertically in parallel to make use of the giant magnetostrictive actuators effectively. The air springs support almost all weight of the micro-manufacturing platform and the giant magnetostrictive actuators support almost no weight. In order to realize high performance to isolate complex micro-vibration, the control method using a three-layer neural network is presented. This vibration control system takes into account the floor disturbance and the direct disturbance acting on the micro-manufacturing platform. The absolute acceleration of the micro-manufacturing platform is used as the performance index of vibration control. The performance of the control system is tested by numerical simulation. Simulation results show that the active vibration isolation system has good isolation performance against the floor disturbance and the direct disturbance acting on the micro-manufacturing platform in all the frequency range.
基金The project was financially supported by the National Natural Science Foundation of China (Grant No.50479027)and by the Natural Science Foundation of Qingdao (Grant No.05-2-JC-88)
文摘In the present work, damage detection for offshore platforms is divided into three steps. Firstly, the located direction of the damaged member is detemfined by the pmbabilistic neural network with input of the change rate of normalized medal frequency. Secondly, the profile and layer of the damaged member is also determined by the pmbabilistic neural network with input of the normalized damage-signal index. Finally, the damage extent is determined by the back propagation neural networks with input of the squared change rate of modal frequency. So the size of the network and the training time can be reduced greatly. All these networks are trained with simulated data obtained from the finite element model of an experiment model. Then these trained neural networks are examined with data obtained from impulse tests on the experiment model. The experiment results show that the trained neural networks are able to detect the damaged member with reasonable accuracy.
文摘A new active control scheme, based on neural network, for the suppression of oscillation in multiple-degree-of-freedom (MDOF) offshore platforms, is studied in this paper. With the main advantages of neural network, i.e. the inherent robustness, fault tolerance, and generalized capability of its parallel massive interconnection structure, the active structural control of offshore platforms under random waves is accomplished by use of the BP neural network model. The neural network is trained offline with the data generated from numerical analysis, and it simulates the process of Classical Linear Quadratic Regular Control for the platform under random waves. After the learning phase, the trained network has learned about the nonlinear dynamic behavior of the active control system, and is capable of predicting the active control forces of the next time steps. The results obtained show that the active control is feasible and effective, and it finally overcomes time delay owing to the robustness, fault tolerance, and generalized capability of artificial neural network.
文摘The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform.
文摘In this paper, the control method for fixed offshore platforms using semi-active tuned liquid column damper (TLCD) is presented. The equation of motion for the platform-TLCD control system is given and the semi-active control strategy is established. A back propagation artificial neural network (ANN) is used to adjust the orifice opening of TLCD because of the nonlinear motion of liquid in TLCD. The effectiveness of the control method is verified by numerical examples.
文摘The development of Internet technology has brought convenience to the development of education and teaching,and has also changed the traditional methods and means of education and teaching. The construction of an integrated network teaching platform based on Internet technology brings new opportunities for the development of higher education. Taking the construction of the integrated network teaching platform of Northwest A&F University as an example,the current situation and existing problems in the construction of the integrated network teaching platform of the Northwest A&F University are explained. By proposing the promotion strategies for the application of the integrated network teaching platform,the construction of the integrated network teaching platform is improved,thereby facilitating the online and offline mixed teaching and further promoting the improvement of teaching level and teaching effect.
文摘A small size ubiquitous healthcare system for the home care of elderly persons was designed and implemented.The system comprised a wireless sensor network node,base station and server computer for the continuous monitoring of ECG signals.ECG data,an important vital sign that is commonly used in clinical and trauma care,were displayed on a graphical user interface (GUI) by transferring the data to a PDA or a terminal PC.This data transfer was accomplished through a base-station connected to a server computer using TCP/IP.Real-time ECG data of elderly persons or patients,as well as historical data,can also be retrieved and played back to assist the diagnosis.The ubiquitous healthcare system presented in this study can effectively reduce social medical expenses,which will increase greatly in the aging society.
基金This work was supported by Institute for Information&communications Technology Promotion(IITP)grant funded by the Korea government(MSIT)(No.2019-0-00685Free space optical communication based vertical mobile network).
文摘As next generation communication technologies emerge,new high data rate applications and high-definition large-screen video streaming have become very popular.As a result,network traffic has been increasing so much that existing backhaul networks soon will not be able to support all traffic demands.To support these needs in future 6G mobile systems,the establishment of an additional backhaul wireless network is considered essential.As one of the solutions,a wireless backhaul network based on an aerial platform has been proposed.In order to explore the potential of aerial platforms as wireless backhaul networks,in this paper,the categories for wireless backhaul networks based on aerial platforms are investigated.This paper includes a survey of the definitions and characteristics of low altitude platforms(LAPs)and high altitude platforms(HAPs),as well as channel models according to the atmosphere.For wireless backhaul network designs based on aerial platforms,altitude and platform selection options,deployment options,energy issues,and security based on target location and performance were considered in the analysis and investigation.