期刊文献+
共找到3,986篇文章
< 1 2 200 >
每页显示 20 50 100
Elastic responses of underground circular arches considering dynamic soil-structure interaction:A theoretical analysis 被引量:12
1
作者 Hai-Long Chen Feng-Nian Jin Hua-Lin Fan 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2013年第1期110-122,共13页
Due to the wide applications of arches in underground protective structures, dynamic analysis of circular arches including soil-structure interactions is important. In this paper, an exact solution of the forced vibra... Due to the wide applications of arches in underground protective structures, dynamic analysis of circular arches including soil-structure interactions is important. In this paper, an exact solution of the forced vibration of circular arches subjected to subsurface denotation forces is obtained. The dynamic soil-structure interaction is considered with the introduction of an interfacial damping between the structure element and the surrounding soil into the equa- tion of motion. By neglecting the influences of shear, rotary inertia and tangential forces and assuming the arch incompressible, the equations of motion of the buried arches were set up. Analytical solutions of the dynamic responses of the protective arches were deduced by means of modal super- position. Arches with different opening angles, acoustic impedances and rise-span ratios were analyzed to discuss their influences on an arch. The theoretical analysis suggests blast loads for elastic designs and predicts the potential failure modes for buried protective arches. 展开更多
关键词 Underground protective arches - dynamic soilstructure interaction dynamic responses Analytical solution
在线阅读 下载PDF
Evaluation of Dynamic Soil-Structure Interaction and Dynamic Seismic Soil Pressures Acting on It Subjected to Strong Earthquake Motions 被引量:1
2
作者 车爱兰 IWATATE Takahiro 葛修润 《Journal of Shanghai Jiaotong university(Science)》 EI 2006年第4期530-536,共7页
In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were per... In order to clarify the damage mechanism of the subway structure, the dynamic soil-structure interaction and the dynamic forces acting on the structure, a series of shaking table tests and simulation analyses were performed. The seismic response of the structure and the dynamic forces acting on the structure due to sinusoidal and random waves were investigated with special attention to the dynamic soil-structure interaction. The result shows that the compression seismic soil pressures and extension seismic soil pressures simultaneously act on the sidewalls, and big shear stress also acts on the ceiling slab due to horizontal excitation. The seismic soil pressure could be approximated to hyperbola curve, and reached a peak value with increase of the shear strain of the model ground. In addition, a slide and exfoliation phenomenon between the structure and the surrounding ground was simulated, using the nonlinear analyses. The foundation is provided for amending the calculation method of seismic soil pressure and improving the anti-earthquake designing level of underground structure. 展开更多
关键词 SUBWAY structure dynamic SEISMIC soil pressure dynamic soil-structure interaction SHAKING TABLE tests dynamic analyses nonlinear characteristics
在线阅读 下载PDF
Dynamic soil-structure interaction analysis in time domain based on a modified version of perfectly matched discrete layers 被引量:1
3
作者 Dong Van Nguyen Dookie Kim 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第1期168-179,共12页
Analysis of soil-structure interaction is commonly conducted by dividing the infinite domain of the soil into two domains:interior and exterior domains.The interior domain is bounded in a small region,while the exteri... Analysis of soil-structure interaction is commonly conducted by dividing the infinite domain of the soil into two domains:interior and exterior domains.The interior domain is bounded in a small region,while the exterior domain is replaced by artificial boundary conditions.The choice of artificial boundary conditions is a critical issue in the analysis of soil-structure interaction problems.Perfectly matched discrete layer(PMDL)has been proved as a good approach for modeling the exterior domain.In this study,a modified version of the PMDLs,i.e.PMDLs with analytical wavelengths(AW-PMDLs),is used in the soil-structure interaction analysis in time domain,which essentially can be regarded as an extension of the analysis in frequency domain,being previously proven to be effective.Numerical verifications are implemented.The results demonstrate that the proposed method performs well in the analysis of soilstructure interaction problems in time domain. 展开更多
关键词 soil-structure interaction Time DOMAIN Wave PROPAGATION WAVELENGTH INFINITE DOMAIN Perfectly matched DISCRETE layer(PMDL)
在线阅读 下载PDF
Elastodynamic Infinite Elements with Modified Bessel Shape Functions for Dynamic Soil-Structure Interaction
4
作者 Konstantin Savkov Kazakov 《Journal of Mechanics Engineering and Automation》 2011年第1期38-43,共6页
The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions. These elements are appropriate for Soil-Structure Interaction (SSI) problems, solve... The paper is devoted to formulations of decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions. These elements are appropriate for Soil-Structure Interaction (SSI) problems, solved in time or frequency domain and can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D Horizontal type Infinite Elements (HIE) is demonstrated here, but by similar techniques 2D Vertical (VIE) and 2D Comer (CIE) Infinite Elements can also be formulated. Using elastodynamic infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamic infinite elements in the Finite Element Method (FEM) is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements. 展开更多
关键词 soil-structure interaction (SSI) wave propagation infinite elements finite element method (FEM) bessel functions.
在线阅读 下载PDF
Soil-Structure Interaction Effects on Dynamic Behaviour of Transmission Line Towers 被引量:1
5
作者 Abir Jendoubi Frédéric Legeron 《Computers, Materials & Continua》 SCIE EI 2022年第1期1461-1477,共17页
As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The ... As inferred from earthquake engineering literature,considering soil structure interaction(SSI)effects is important in evaluating the response of transmission line towers(TLT)to dynamic loads such as impulse loads.The proposed study investigates the dynamic effects of SSI on TLT behavior.Linear and non-linearmodels are studied.In the linearmodel,the soil is represented by complex impedances,dependent of dynamic frequency,determined from numerical simulations.The nonlinearmodel considers the soil non-linear behavior in its material constitutive law and foundation uplift in a non-linear time history analysis.The simplified structure behavior of a typical lattice transmission tower is assessed.The analysis of frequency and time domain are followed through varying soil stiffness and damping values.Three different shock durations are investigated.The soil-structure system with equivalent dynamic properties is determined.The behaviors achieved utilizing a rigid and a flexible base for the structures is compared to estimate the impact of taking SSI into account in the calculation.The current mainstream approach in structural engineering,emphasizing the importance of the SSI effect,is illustrated using an example where the SSI effect could be detrimental to the structure.Furthermore,the non-linear analysis results are analyzed to show the linear approach’s limitations in the event of grand deformations. 展开更多
关键词 TOWER shock loads NON-LINEAR dynamic soil-structure interaction
在线阅读 下载PDF
Seismic wave input method for three-dimensional soil-structure dynamic interaction analysis based on the substructure of artificial boundaries 被引量:18
6
作者 Liu Jingbo Tan Hui +2 位作者 Bao Xin Wang Dongyang Li Shutao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2019年第4期747-758,共12页
The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident... The method of inputting the seismic wave determines the accuracy of the simulation of soil-structure dynamic interaction. The wave method is a commonly used approach for seismic wave input, which converts the incident wave into equivalent loads on the cutoff boundaries. The wave method has high precision, but the implementation is complicated, especially for three-dimensional models. By deducing another form of equivalent input seismic loads in the fi nite element model, a new seismic wave input method is proposed. In the new method, by imposing the displacements of the free wave fi eld on the nodes of the substructure composed of elements that contain artifi cial boundaries, the equivalent input seismic loads are obtained through dynamic analysis of the substructure. Subsequently, the equivalent input seismic loads are imposed on the artifi cial boundary nodes to complete the seismic wave input and perform seismic analysis of the soil-structure dynamic interaction model. Compared with the wave method, the new method is simplifi ed by avoiding the complex processes of calculating the equivalent input seismic loads. The validity of the new method is verifi ed by the dynamic analysis numerical examples of the homogeneous and layered half space under vertical and oblique incident seismic waves. 展开更多
关键词 soil-structure dynamic interaction SEISMIC WAVE INPUT WAVE method EQUIVALENT INPUT SEISMIC loads SUBSTRUCTURE of artifi cial boundaries
在线阅读 下载PDF
Interactive Dynamic Graph Convolution with Temporal Attention for Traffic Flow Forecasting
7
作者 Zitong Zhao Zixuan Zhang Zhenxing Niu 《Computers, Materials & Continua》 2026年第1期1049-1064,共16页
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In... Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods. 展开更多
关键词 Traffic flow prediction interactive dynamic graph convolution graph convolution temporal multi-head trend-aware attention self-attention mechanism
在线阅读 下载PDF
An overview of structure-soil-structure dynamic interaction research
8
作者 王淮峰 《Journal of Chongqing University》 CAS 2011年第3期101-112,共12页
The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soi... The concept of structure-soil-structure dynamic interaction was introduced and the research methods were summarized.Based on lots of documents,a systematic summary of the history and current situation of structure-soil-structure dynamic interaction research considering adjacent structures was proposed as reference for researchers.The existing matter and the prospect of future research trend in this field was also examined. 展开更多
关键词 soil-structure interaction (SSI) structure-soil-structure interaction (SSSI) dynamic cross interaction (DCI) foundation-soil-foundation interaction (FSFI) adjacent STRUCTURE
在线阅读 下载PDF
Influence of Soil-Structure Interaction Models on the Dynamic Responses of An Offshore Wind Turbine Under Environmental Loads
9
作者 TANG Hong-ming YUE Min-nan +3 位作者 YAN Yang-tian LI Zhi-hao LI Chun NIU Kai-lun 《China Ocean Engineering》 SCIE EI CSCD 2023年第2期218-231,共14页
Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interact... Offshore wind turbines(OWTs) suffer wind, wave and earthquake loads. The investigation of OWTs' dynamic response under environmental loads is essential for structural safety assessment. The soil-structure interaction(SSI)significantly affects the responses of OWT under environmental loads. However, there is few systematic research about the difference in the dynamic response of different SSI models under environmental loads. In order to solve the problem, the OWT is modeled by shell element, and several SSI models are built. The wind, wave and earthquake loads are taken into account. Moreover, the dynamic response, fatigue and buckling analysis are performed by ANSYS. The results indicate that SSI cannot be ignored in the dynamic response of the OWT under wind and wave loads. The SSI can decrease the displacement response of the OWT by 19% under wind and wave loads and reduce the fatigue damage of the pile. Multi-layer SSI can strongly influence the OWT's dynamic response under wind and wave loads or earthquake-only load. The vertical earthquake load increases the dynamic response in three directions.Besides, in order to simulate real environment, multi-layer SSI, soil damping and vertical SSI must be considered to evaluate the displacement response of the OWT under wind, wave and earthquake loads. The earthquake and gravity loads can cause more obvious response of the OWT than that of only wind and wave loads. The top and bottom of the tower are prone to occur buckling. 展开更多
关键词 OWT soil structure interaction EARTHQUAKE dynamic analysis structural damage
在线阅读 下载PDF
On the Total Dynamic Response of Soil-Structure Interaction System in Time Domain Using Elastodynamic Infinite Elements with Scaling Modified Bessel Shape Functions
10
作者 Konstantin Kazakov 《American Journal of Computational Mathematics》 2013年第2期104-109,共6页
This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel ... This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions. 展开更多
关键词 soil-structure interaction Wave Propagation INFINITE Elements FINITE Element Method BESSEL Functions DUHAMEL INTEGRAL
在线阅读 下载PDF
Quantitative principles of dynamic interaction between rock support and surrounding rock in rockburst roadways 被引量:3
11
作者 Lianpeng Dai Dingjie Feng +4 位作者 Yishan Pan Aiwen Wang Ying Ma Yonghui Xiao Jianzhuo Zhang 《International Journal of Mining Science and Technology》 2025年第1期41-55,共15页
Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effe... Rockbursts, which mainly affect mining roadways, are dynamic disasters arising from the surrounding rock under high stress. Understanding the interaction between supports and the surrounding rock is necessary for effective rockburst control. In this study, the squeezing behavior of the surrounding rock is analyzed in rockburst roadways, and a mechanical model of rockbursts is established considering the dynamic support stress, thus deriving formulas and providing characteristic curves for describing the interaction between the support and surrounding rock. Design principles and parameters of supports for rockburst control are proposed. The results show that only when the geostress magnitude exceeds a critical value can it drive the formation of rockburst conditions. The main factors influencing the convergence response and rockburst occurrence around roadways are geostress, rock brittleness, uniaxial compressive strength, and roadway excavation size. Roadway support devices can play a role in controlling rockburst by suppressing the squeezing evolution of the surrounding rock towards instability points of rockburst. Further, the higher the strength and the longer the impact stroke of support devices with constant resistance, the more easily multiple balance points can be formed with the surrounding rock to control rockburst occurrence. Supports with long impact stroke allow adaptation to varying geostress levels around the roadway, aiding in rockburst control. The results offer a quantitative method for designing support systems for rockburst-prone roadways. The design criterion of supports is determined by the intersection between the convergence curve of the surrounding rock and the squeezing deformation curve of the support devices. 展开更多
关键词 Deep roadway ROCKBURST dynamic interaction Rock support Surrounding rock Rockburst control
在线阅读 下载PDF
Dynamic Interaction Analysis of Coupled Axial-Torsional-Lateral Mechanical Vibrations in Rotary Drilling Systems
12
作者 Sabrina Meddah Sid Ahmed Tadjer +3 位作者 Abdelhakim Idir Kong Fah Tee Mohamed Zinelabidine Doghmane Madjid Kidouche 《Structural Durability & Health Monitoring》 EI 2025年第1期77-103,共27页
Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emp... Maintaining the integrity and longevity of structures is essential in many industries,such as aerospace,nuclear,and petroleum.To achieve the cost-effectiveness of large-scale systems in petroleum drilling,a strong emphasis on structural durability and monitoring is required.This study focuses on the mechanical vibrations that occur in rotary drilling systems,which have a substantial impact on the structural integrity of drilling equipment.The study specifically investigates axial,torsional,and lateral vibrations,which might lead to negative consequences such as bit-bounce,chaotic whirling,and high-frequency stick-slip.These events not only hinder the efficiency of drilling but also lead to exhaustion and harm to the system’s components since they are difficult to be detected and controlled in real time.The study investigates the dynamic interactions of these vibrations,specifically in their high-frequency modes,usingfield data obtained from measurement while drilling.Thefindings have demonstrated the effect of strong coupling between the high-frequency modes of these vibrations on drilling sys-tem performance.The obtained results highlight the importance of considering the interconnected impacts of these vibrations when designing and implementing robust control systems.Therefore,integrating these compo-nents can increase the durability of drill bits and drill strings,as well as improve the ability to monitor and detect damage.Moreover,by exploiting thesefindings,the assessment of structural resilience in rotary drilling systems can be enhanced.Furthermore,the study demonstrates the capacity of structural health monitoring to improve the quality,dependability,and efficiency of rotary drilling systems in the petroleum industry. 展开更多
关键词 Rotary drilling systems mechanical vibrations structural durability dynamic interaction analysis field data analysis
在线阅读 下载PDF
Correction:Neural Dynamics of Visual Stream Interactions During Memory-Guided Actions Investigated by Intracranial EEG
13
作者 Sofiia Moraresku Jiri Hammer +6 位作者 Vasileios Dimakopoulos Michaela Kajsova Radek Janca Petr Jezdik Adam Kalina Petr Marusic Kamil Vlcek 《Neuroscience Bulletin》 2025年第9期1709-1709,共1页
Correction to:Neuroscience Bulletin https://doi.org/10.1007/s12264-025-01371-x In this article the affiliation"Department of Circuit Theory,Faculty of Electrical Engineering,Czech Technical University in Prague,M... Correction to:Neuroscience Bulletin https://doi.org/10.1007/s12264-025-01371-x In this article the affiliation"Department of Circuit Theory,Faculty of Electrical Engineering,Czech Technical University in Prague,Member of the Epilepsy Research Centre Prague-EpiReC Consortium,Prague,Czechia"should only be assigned to Radek Janca and Petr Jezdik.It is removed from the authors:Jiri Hammer,Michaela Kajsova,Adam Kalina,Petr Marusic,and Kamil Vlcek. 展开更多
关键词 visual stream interactions memory guided actions neural dynamics neuroscience intracranial EEG
原文传递
Rheological behaviors of Na-montmorillonite considering particle interactions:A molecular dynamics study
14
作者 Siqi Zhang Daoyuan Tan +2 位作者 Honghu Zhu Huafu Pei Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第7期4657-4671,共15页
Understanding the rheology of bentonite suspensions is crucial for ensuring the safety of engineering practices.However,the rheological mechanisms of bentonite remain unclear due to the limitations of conventional exp... Understanding the rheology of bentonite suspensions is crucial for ensuring the safety of engineering practices.However,the rheological mechanisms of bentonite remain unclear due to the limitations of conventional experimental techniques,particularly in assessing the microscopic interactions between clay particles and their impact on rheological properties.In this paper,the rheological behaviors of Namontmorillonite were studied with a focus on interparticle interactions.Both equilibrium molecular dynamics(MD)and non-equilibrium MD simulations were conducted to understand the physical properties of Na-montmorillonite under zero shear and various shear rates,respectively.The interaction between two parallel clay particles was determined in simulations,indicating that the classical Darjaguin-Landau-Verwey-Overbeek(DLVO)theory underestimates the interactions for a small separation distance.Na-montmorillonite exhibits a typical shear thinning behavior under shearing.However,as water content increases,it begins to behave more like liquid water.The yield stress of montmorillonite,as determined by the Bingham model,was found to be linearly related to the interaction pressures between clay particles.Besides MD simulations,the microstructure of clay suspension was further quantified using the separation distance and incline angle between non-parallel clay particles.Based on MD results and the quantified clay structure,a model was developed to estimate the yield stress of montmorillonite considering various influence factors,including electrolyte concentration,temperature,and solid fraction.Finally,from a comparison with calculated and experimental data,the results confirm the good performance of the proposed model.These findings provide significant insights for understanding the rheological soil behaviors and evaluating the yield stress of bentonite suspensions. 展开更多
关键词 Rheological behavior Yield stress Molecular dynamics Particle interactions Darjaguin-Landau-Verwey-Overbeek(DLVO)theory Microstructure Montmorillonite suspension
在线阅读 下载PDF
Modulation of d-d orbital interactions in Ti-Ni-N_(4)coordination introduces dynamic bonding for enhanced CO_(2)photoreduction
15
作者 Song-Song Zhi Xiao-Xiao Zou +6 位作者 Jin-Ye Lei Lu Zhang Zi-Han Li Wan-Nuo Gu Fahim Ullah Hong Guo Da-Peng Wu 《Rare Metals》 2025年第10期7464-7475,共12页
Photocatalytic CO_(2)reduction using atomically dispersed catalysts holds significant potential for addressing global energy and environmental challenges.However,the influence of d-d orbital interactions between metal... Photocatalytic CO_(2)reduction using atomically dispersed catalysts holds significant potential for addressing global energy and environmental challenges.However,the influence of d-d orbital interactions between metal centers and coordinated atoms remains under explored.Herein,nickel phthalocyanine is anchored to the metalexposed crystal face of TiO_(2),forming Ti-Ni-N_(4)coordination.This configuration reveals that the axially coordinated Ti atoms serve as a novel electron channel with electron-donating ability,transferring electrons to the Ni center through d-d coupling.It is found that the dynamic adjustment of bond lengths and d-band centers in Ti-Ni bonding during CO_(2)photoreduction process can effectively modulate the adsorption strengths of the Ni center for different intermediates.This leads to a significant enhancement in the photocatalytic performance for CO_(2)reduction to CO without a sacrificial reagent,achieving an exceptional CO evolution rate of 378.5μmol g^(-1).Furthermore,the d-d coupling mediated by Ti-Ni-N_(4)coordination increases the vacancy formation energy of active sites,preventing the leaching of Ni active centers.This study provides a strategy for the precise design of d-d orbital regulation and resistance to demetallization in photocatalysts for efficient CO_(2)conversion. 展开更多
关键词 d-d orbital interaction dynamic bonding Ni demetallization Photocatalytic CO_(2)reduction
原文传递
Soliton Interactions and Collision Dynamics in a Variable-Coefficient Coupled Nonlocal Nonlinear Schrödinger Systems
16
作者 Xinnan Cui Zhiyang Zhang +2 位作者 Muwei Liu Fenghua Qi Wenjun Liu 《Chinese Physics Letters》 2025年第10期68-74,共7页
The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations ... The coupled nonlocal nonlinear Schrödinger equations with variable coefficients are researched using the nonstandard Hirota bilinear method.The two-soliton and double-hump one-soliton solutions for the equations are first obtained.By assigning different functions to the variable coefficients,we obtain V-shaped,Y-shaped,wave-type,exponential solitons,and so on.Next,we reveal the influence of the real and imaginary parts of the wave numbers on the double-hump structure based on the soliton solutions.Finally,by setting different wave numbers,we can change the distance and transmission direction of the solitons to analyze their dynamic behavior during collisions.This study establishes a theoretical framework for controlling the dynamics of optical fiber in nonlocal nonlinear systems. 展开更多
关键词 two soliton solutions soliton interactions assigning different functions collision dynamics nonstandard hirota bilinear methodthe nonstandard hirota bilinear method variable coefficient coupled nonlocal nonlinear schr dinger systems coupled nonlocal nonlinear schr dinger equations variable coefficients
原文传递
Soil-structure interaction of unsymmetrical trench installation culvert 被引量:8
17
作者 陈保国 郑俊杰 鲁燕儿 《Journal of Southeast University(English Edition)》 EI CAS 2009年第1期94-98,共5页
The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately ... The computation of the design load on culverts in the current Chinese General Code for Design of Highway Bridges and Culverts (CGCDHBC)is primarily based on the linear earth pressure theory, which cannot accurately reflect the changes in vertical loads on trench installation culverts. So the changes in vertical earth pressure and soil arching effect in the backfill for an unsymmetrical trench installation culvert are studied based on a full scale experiment and finite element (FE) simulation. The variation laws of foundation pressure and settlement are also analyzed. Meanwhile, the influence of eccentric load induced by an unsymmetrical trench installation on the interaction of a soil- structure system is discussed. Results show that soil arch is formed when the backfill on the culvert reaches a certain height. It can relieve the earth pressure concentration on the crest of the culvert, but it is instable. The earth pressures obtained by full scale experiment and numerical simulation are greater than those calculated by the current CGCDHBC method. The eccentric load effect on the culvert has a significant influence on the stress states and deformation of the soil-structure system. 展开更多
关键词 soil-structure interaction soil arching effect eccentric load effect full scale experiment numerical simulation
在线阅读 下载PDF
Application of Computational Fluid Dynamics and Fluid Structure Interaction Techniques for Calculating the 3D Transient Flow of Journal Bearings Coupled with Rotor Systems 被引量:21
18
作者 LI Qiang YU Guichang +1 位作者 LIU Shulian ZHENG Shuiying 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第5期926-932,共7页
Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simpli... Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approacb is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the joumal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system. 展开更多
关键词 mesh movement transient flow computational fluid dynamics (CFD) fluid-structure interaction (FSI) journal bearing
在线阅读 下载PDF
Human Interaction Dynamics for Its Use in Mobile Robotics:Impedance Control for Leader-follower Formation 被引量:12
19
作者 Daniel Herrera Flavio Roberti +1 位作者 Marcos Toibero Ricardo Carelli 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期696-703,共8页
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi... A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction. 展开更多
关键词 Human modeling human-machine interaction impedance control robot dynamics social robotics
在线阅读 下载PDF
Molecular Dynamics Simulations of the Interactions Between Konjac Glucomannan and Soy Protein Isolate 被引量:7
20
作者 WANG Meng YAO Min-na +2 位作者 JIAN Wen-lie SUN Yu-jing PANG Jie 《Agricultural Sciences in China》 CAS CSCD 2010年第10期1538-1542,共5页
The interactions between konjac glucomannan(KGM) and soy protein isolate (SPI) were studied with the method of molecular dynamics simulation. Part representative structures segments of KGM and SPI were used as mod... The interactions between konjac glucomannan(KGM) and soy protein isolate (SPI) were studied with the method of molecular dynamics simulation. Part representative structures segments of KGM and SPI were used as mode, and the force-field was FF03. The stability and sites of KGM/SPI interactions in water were researched at 363 K with the following results: the potential energy (EPOT) of the mixed gel dropped, while that of single KGM gel increased. The surface area (SA) of KGM in the mixed system was decreased to 401.41 from 1 267.54 Az, and that of SPI to 484.94 from 1 943.28 A2. The sum potential energy of KGM and soy protein in the mixed system was decreased to -13 402.41 from -5 768.56 kcal mol^-1. The variations of two parameters showed that the stability of compound gel KGM/SPI was improved, which was consistent with the previous studies. The sites of interactions in the mixed gel were the -OH groups on C(2) in KGM mannose and glucose, and the amide linkage group on Histidine, Asparagine and Leucine in SPI. The hydrogen bond was formed directly or indirectly by the bridge of waters. 展开更多
关键词 KGM SPI molecular dynamics simulation interaction
在线阅读 下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部