The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,re...The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.展开更多
Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without informat...Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.展开更多
Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may ...Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.展开更多
Mueller matrix polarimetry(MMP)has been proven to be a powerful tool for characterizing the microstructural features of biological samples in biomedical research and clinical diagnostics.However,the traditional Muelle...Mueller matrix polarimetry(MMP)has been proven to be a powerful tool for characterizing the microstructural features of biological samples in biomedical research and clinical diagnostics.However,the traditional Mueller matrix(MM)imaging technique based on single exposure has a limited dynamic range,leading to poor polarization image quality for biological samples with signi-cant contrast variations.In this study,we propose a novel method to generate high dynamic range(HDR)MM images based on a multi-exposure fusion algorithm.By employing an optimal exposure selection strategy for transmission imaging and a multi-exposure weighted averaging strategy for backscattering imaging,the method expands the dynamic range while accurately preserving the polarization information of the samples.Experiments of sliced and bulk tissues demonstrate that the proposed method signi¯cantly suppresses the scattering noise and improves the quality of extracted polarization parameter images,especially in accurate distinction of di®erent pathological areas.These results highlight the potential of HDR MM imaging technology in extracting polarization information from complex biological samples with high resolution and contrast.展开更多
Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve li...Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples.Methods Adult Sprague-Dawley rats were divided into normal and SNL groups.Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn.Results Compared with the WDR neurons in normal rats,the WDR neurons in SNL rats showed an increase in excitability,manifested by an enlargement of the receptive field size,an increase in the proportion of neurons that exhibited spontaneous activities,decreases in the Cresponse threshold and latency,and an increase in the C-response duration.In addition,the numbers of A-and C-fiberevoked discharges were smaller in SNL rats than in normal rats.Conclusion The excitability of spinal WDR neurons increased in rats with neuropathic pain induced by L5 SNL.The increase in excitability of WDR neurons may contribute to the development of neuropathic pain.展开更多
The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use ...The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use the classical statistical theory to evaluate the dynamic evaluation of the rolling bearing friction torque for the lack of prior information about both probability distribution and trends. For this reason, based on the information poor system theory and combined with the correlation dimension in chaos theory, the concepts about the mean of the dynamic fluctuant range (MDFR) and the grey relation are proposed to resolve the problem about evaluating the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque. Friction torque experiments are done for three types of the rolling bearings marked with HKTA, HKTB and HKTC separately; meantime, the correlation dimension and MDFR are calculated to describe the nonlinear characteristic and the dynamic uncertainty of the friction torque, respectively. And the experiments reveal that there is a certain grey relation between the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque, viz. MDFR will become the nonlinear increasing trend with the correlation dimension increasing. Under the condition of fewer characteristic data and the lack of prior information about both probability distribution and trends, the unitive evaluation for the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque is realized with the grey confidence level of 87.7%-96.3%.展开更多
In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-ene...In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-energy imaging calorimeter(HEIC) is currently being developed as a homogeneous calorimeter that utilizes long bismuth germanate(BGO) scintillation crystals as both absorbers and detectors. To accurately measure the energy deposition in the BGO bar of HEIC, a highdynamic-range readout method using a silicon photomultiplier(SiPM) and multiphotodiode(PD) with different active areas has been proposed. A prototype readout system that adopts multichannel charge measurement ASICs was also developed to read out the combined system of SiPMs and PDs. Preliminary tests confirmed the feasibility of the readout scheme, which is expected to have a dynamic range close to 10~6.展开更多
The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range.A larger dynamic range indicates a greater probability of neuronal survival.In this study,the potential...The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range.A larger dynamic range indicates a greater probability of neuronal survival.In this study,the potential roles of adaptation mechanisms(ion currents) in modulating neuronal dynamic range were numerically investigated.Based on the adaptive exponential integrate-and-fire model,which includes two different adaptation mechanisms,i.e.subthreshold and suprathreshold(spike-triggered) adaptation,our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range.Specifically,subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range,while suprathreshold adaptation has little influence on the neuronal dynamic range.Moreover,when stochastic noise was introduced into the adaptation mechanisms,the dynamic range was apparently enhanced,regardless of what state the neuron was in,e.g.adaptive or non-adaptive.Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms.Additionally,noise was a non-ignorable factor,which could effectively modulate the neuronal dynamic range.展开更多
A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier (LNA) and a passive mixer with no external balun for near-zero-IF (Intermediate Frequency)/RF (Radio Frequency) applications are described. The ...A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier (LNA) and a passive mixer with no external balun for near-zero-IF (Intermediate Frequency)/RF (Radio Frequency) applications are described. The LNA, fabricated in the 0.18μm 1P6M CMOS technology, adopts a gain-switched technique to increase the linearity and enlarge the dynamic range. The mixer is an IQ-based passive topology. Measurements of the CMOS chip are performed on the FR-4 PCB and the input is matched to 50Ω. Combining LNA and mixer, the front-end measured performances in high gain state are: -15dB of Sll, 18.5dB of voltage gain, 4.6dB of noise figure, 15dBm of IIP3, 85dBm to -10dBm dynamic range. The full circuit drains 6mA from a 1.8V supply.展开更多
Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response ...Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error.Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations.An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method.The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%.Under the fluctuations of 5%for optical intensity and±15 GHz detuning of frequency,the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%,respectively.Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.展开更多
The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation r...The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation results of the new method are given, and the problem of direct application of bipolar spread spectrum codes to OTDR and despreading in the optical domain are solved. The simulation results show the feasibility of the SSOTDR, which exhibits better dynamic range reported to date for a practical long-haul OTDR system without using conventional average technique.展开更多
We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target i...We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement.The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system.Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10^−8 to 10^2 ng/g.Of great significance,the signal response in all OTA concentration ranges is at the same current scale,demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification.Finally,OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions.This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.展开更多
We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distan...We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting(TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×10~7 cps.展开更多
Effects of refractory period on the dynamical range in excitable networks are studied by computer simulations and theoretical analysis. The first effect is that the maximum or peak of the dynamical range appears when ...Effects of refractory period on the dynamical range in excitable networks are studied by computer simulations and theoretical analysis. The first effect is that the maximum or peak of the dynamical range appears when the largest eigenvalue of adjacent matrix is larger than one. We present a modification of the theory of the critical point by considering the correlation between excited nodes and their neighbors, which is brought by the refractory period. Our analysis provides the interpretation for the shift of the peak of the dynamical range. The effect is negligible when the average degree of the network is large. The second effect is that the dynamical range increases as the length of refractory period increases, and it is independent of the average degree. We present the mechanism of the second effect. As the refractory period increases,the saturated response decreases. This makes the bottom boundary of the dynamical range smaller and the dynamical range extend.展开更多
For the optimization of dynamic range and bandwidth of digital intermediate frequency receiver(DIFR), main factors affecting them and their relationships are studied. Firstly, the DIFR sensitivity, bandwidth, noise fa...For the optimization of dynamic range and bandwidth of digital intermediate frequency receiver(DIFR), main factors affecting them and their relationships are studied. Firstly, the DIFR sensitivity, bandwidth, noise factor of radio frequency (RF) analog front-end (RFAF), and processing gain of intermediate frequency(IF) sampling are analyzed. Secondly, the constraint relationship of the noise factor of RFAF, the signal-to-noise ratio of ADC and the dynamic range of DIFR are studied. The relationship between the dynamic range and the RFAF gain, and that of the extended dynamic range and the RF AGC(automatic gain control) step are educed and simulated. These results can be used as theory foundations and design references for the implementation and optimization of the large dynamic range and wideband DIFR.展开更多
Distortion-free data embedding is a technique which can assure that not only the secret data is correctly extracted but also the cover media is recovered without any distortion after secret data is extracted completel...Distortion-free data embedding is a technique which can assure that not only the secret data is correctly extracted but also the cover media is recovered without any distortion after secret data is extracted completely. Because of these advantages, this technique attracts the attention of many researchers. In this paper, a new distortion-free data embedding scheme for high dynamic range (HDR) images is proposed. By depending on Cartesian product, this scheme can obtain higher embedding capacity while maintaining the exactly identical cover image and stego image when using the tone mapping algorithms. In experimental results, the proposed scheme is superior to Yu et aL's scheme in regard to the embedding rate——an average embedding rate of 0.1355 bpp compared with Yn et aL's scheme (0.1270 bpp).展开更多
Objective: To study the effects of clinical concentration of sevoflurane on activity of wide dynamic range neurons. Methods: Eight Spraque-Dawley rats(male) were selected. Their spinal cords were exposed and transecte...Objective: To study the effects of clinical concentration of sevoflurane on activity of wide dynamic range neurons. Methods: Eight Spraque-Dawley rats(male) were selected. Their spinal cords were exposed and transected at T 9-10 level. The rate of firings of single neurons in the dorsal horn in response to electrical stimulation of skin was recorded with microelectrodes. The early and late discharges were observed when rats inhaled 0.5%, 1.0%, 1.5%, and 2.0% sevoflurane. Results: Sevoflurane suppressed the early and late discharges at the concentration of 0.5%, 1.0%, 1.5%, and 2.0%. Compared with early discharges, the extent of inhibition of late discharges was wider at the concentration of 1%, 1.5%, and 2.0% of sevoflurane. Conclusion: It is indicated that sevoflurane could suppress the transmission of nociceptive and non-nociceptive stimulation at dorsal horn. The suppression on nociceptive imput is stronger than that on non-nociceptive imput when the concentration of sevoflurane is more than 1%.展开更多
An effective method for object shape recovery using HDRIs (high dynamic range images) is proposed. The radiance values of each point on the reference sphere and target object are firstly calculated, thus the set of ...An effective method for object shape recovery using HDRIs (high dynamic range images) is proposed. The radiance values of each point on the reference sphere and target object are firstly calculated, thus the set of candidate normals of each target point are found by comparing its radiance to that of each reference sphere point. In single-image shape recovery, a smoothness operation is applied to the target normals to obtain a stable and reasonable result; while in photometric stereo, radiance vectors of reference and target objects formed due to illuminations under different fight source directions are directly compared to get the most suitable target normals. Finally, the height values can be recovered from the resulting normal field. Because diffuse and specular reflection are handled in an unified framework with radiance, our approach eliminates the limitation presented in most recovery strategies, i.e., only Lambertian model can be used. The experiment results from the real and synthesized images show the performance of our approach.展开更多
Radio Frequency (RF) switch circuit is the basic part of microwave devices and systems. The non-linearity distortion figure is necessary in the field of large dynamic range of signal. This letter analyzes the basic sw...Radio Frequency (RF) switch circuit is the basic part of microwave devices and systems. The non-linearity distortion figure is necessary in the field of large dynamic range of signal. This letter analyzes the basic switch circuit and its inter-modulation, and studies in detail the measurement methods and systems of RF switch intercept point. It has provided cascaded simulation testing methods, which can accurately measure the PF switch, of which the second or third order intercept point value is above 75dB and 60dB, respectively. As the testing results are consistent with the theoretical analyses, it proves that the validity of the method satisfies the requirements of large scaled linearity measurement in engineering.展开更多
Due to the existing limited dynamic range a camera cannot reveal all the details in a high-dynamic range scene. In order to solve this problem,this paper presents a multi-exposure fusion method for getting high qualit...Due to the existing limited dynamic range a camera cannot reveal all the details in a high-dynamic range scene. In order to solve this problem,this paper presents a multi-exposure fusion method for getting high quality images in high dynamic range scene. First,a set of multi-exposure images is obtained by multiple exposures in a same scene and their brightness condition is analyzed. Then,multi-exposure images under the same scene are decomposed using dual-tree complex wavelet transform( DT-CWT),and their low and high frequency components are obtained. Weight maps according to the brightness condition are assigned to the low components for fusion. Maximizing the region Sum Modified-Laplacian( SML) is adopted for high-frequency components fusing. Finally,the fused image is acquired by subjecting the low and high frequency coefficients to inverse DT-CWT.Experimental results show that the proposed approach generates high quality results with uniform distributed brightness and rich details. The proposed method is efficient and robust in varies scenes.展开更多
文摘The Fringe Projection Profilometry(FPP)system with a single exposure time or a single projection intensity is limited by the dynamic range of the camera,which can lead to overexposure and underexposure of the image,resulting in point cloud loss or reduced accuracy.To address this issue,unlike the pixel modulation method of projectors,we utilize the characteristics of color projectors where the intensity of the three-channel LED can be controlled independently.We propose a method for separating the projector's three-channel light intensity,combined with a color camera,to achieve single exposure and multi-intensity image acquisition.Further,the crosstalk coefficient is applied to predict the three-channel reflectance of the measured object.By integrating clustering and channel mapping,we establish a pixel-level mapping model between the projector's three-channel current and the camera's three-channel image intensity,which realizes the optimal projection current prediction and the high dynamic range(HDR)image acquisition.The proposed method allows for high-precision three-dimensional(3D)data acquisition of HDR scenes with a single exposure.The effectiveness of this method has been validated through experiments with standard planes and standard steps,showing a significant reduction in mean absolute error(44.6%)compared to existing singleexposure HDR methods.Additionally,the number of images required for acquisition is significantly reduced(by 70.8%)compared to multi-exposure fusion methods.This proposed method has great potential in various FPP-related fields.
文摘Large dynamic range and ultra-wideband receiving abilities are significant for many receivers. With these abilities, receivers can obtain signals with different power in ultra-wideband frequency space without information loss. However, conventional receiving scheme is hard to have large dynamic range and ultra-wideband receiving simultaneously because of the analog-to-digital converter(ADC) dynamic range and sample rate limitations. In this paper, based on the modulated sampling and unlimited sampling, a novel receiving scheme is proposed to achieve large dynamic range and ultra-wideband receiving. Focusing on the single carrier signals, the proposed scheme only uses a single self-rest ADC(SR-ADC) with low sample rate, and it achieves large dynamic range and ultra-wideband receiving simultaneously. Two receiving scenarios are considered, and they are cooperative strong signal receiving and non-cooperative strong/weak signals receiving. In the cooperative receiving scenario, an improved fast recovery method is proposed to obtain the modulated sampling output. In the non-cooperative receiving scenario, the strong and weak signals with different carrier frequencies are considered, and the signal processing method can recover and estimate each signal. Simulation results show that the proposed scheme can realize large dynamic range and ultra-wideband receiving simultaneously when the input signal-to-noise(SNR) ratio is high.
基金supported by the Science and Technology Program Project of Tianjin(No.24ZXZSSS00300).
文摘Grating fringe projection 3D measurement techniques are extensively applied in various fields.However,in high dynamic range scenarios with significant surface reflectivity variations,uneven greyscale distribution may lead to phase errors and poor reconstruction results.To address this problem,an adaptive fringe projection method is introduced.The method involves projecting two sets of dark and light fringes onto the object,enabling the full-field projection intensity map to be generated adaptively based on greyscale analysis.First,dark fringes are projected onto the object to extend exposure time as long as possible without causing overexposure in the image.Subsequently,bright fringes are projected under the same exposure settings to detect overexposed pixels,and the greyscale distribution of these overexposed points from the previous dark fringe projection is analyzed to calculate the corresponding projection intensities.Finally,absolute phase information from orthogonal fringes is used for coordinate matching,enabling the generation of adaptive projection fringe patterns.Experiments on various high dynamic range objects show that compared to conventional fringe projection binocular reconstruction method,the proposed algorithm achieves complete reconstruction of high dynamic range surfaces and shows robust performance against phase calculation errors caused by overexposure and low modulation.
基金supported by the Cross-research Innovation Fund of the International Graduate School at Shenzhen,Tsinghua University(JC2021002).
文摘Mueller matrix polarimetry(MMP)has been proven to be a powerful tool for characterizing the microstructural features of biological samples in biomedical research and clinical diagnostics.However,the traditional Mueller matrix(MM)imaging technique based on single exposure has a limited dynamic range,leading to poor polarization image quality for biological samples with signi-cant contrast variations.In this study,we propose a novel method to generate high dynamic range(HDR)MM images based on a multi-exposure fusion algorithm.By employing an optimal exposure selection strategy for transmission imaging and a multi-exposure weighted averaging strategy for backscattering imaging,the method expands the dynamic range while accurately preserving the polarization information of the samples.Experiments of sliced and bulk tissues demonstrate that the proposed method signi¯cantly suppresses the scattering noise and improves the quality of extracted polarization parameter images,especially in accurate distinction of di®erent pathological areas.These results highlight the potential of HDR MM imaging technology in extracting polarization information from complex biological samples with high resolution and contrast.
基金supported by the grants from National Natural Science Foundation of China(No. 30600173,81070893)the Key Project of China Ministry of Education(No. 109003)+1 种基金the National Basic Research Development Program(973 Program) of China (No.2007CB512501)Beijing Municipal Commission of Education "Special Grants for Outstanding Ph.D Program Tutors"
文摘Objective The present study aimed to investigate the electrophysiological properties of wide dynamic range (WDR) neurons in spinal dorsal horn of rats with neuropathic pain induced by lumber 5 (L5) spinal nerve ligation (SNL) in a large size of samples.Methods Adult Sprague-Dawley rats were divided into normal and SNL groups.Electrophysiological technique was used to record the characteristics of WDR neurons in the spinal dorsal horn.Results Compared with the WDR neurons in normal rats,the WDR neurons in SNL rats showed an increase in excitability,manifested by an enlargement of the receptive field size,an increase in the proportion of neurons that exhibited spontaneous activities,decreases in the Cresponse threshold and latency,and an increase in the C-response duration.In addition,the numbers of A-and C-fiberevoked discharges were smaller in SNL rats than in normal rats.Conclusion The excitability of spinal WDR neurons increased in rats with neuropathic pain induced by L5 SNL.The increase in excitability of WDR neurons may contribute to the development of neuropathic pain.
基金supported by National Natural Science Foundation of China (Grant No. 50675011)Doctoral Scientific Research Enabling Foundation of Henan University of Science and Technology,China (Grant No. 09001318)
文摘The rolling bearing friction torque which is characterized by its uncertainty and nonlinearity affects heavily the dynamic performance of a system such as missiles, spacecrafts and radars, etc. It is difficult to use the classical statistical theory to evaluate the dynamic evaluation of the rolling bearing friction torque for the lack of prior information about both probability distribution and trends. For this reason, based on the information poor system theory and combined with the correlation dimension in chaos theory, the concepts about the mean of the dynamic fluctuant range (MDFR) and the grey relation are proposed to resolve the problem about evaluating the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque. Friction torque experiments are done for three types of the rolling bearings marked with HKTA, HKTB and HKTC separately; meantime, the correlation dimension and MDFR are calculated to describe the nonlinear characteristic and the dynamic uncertainty of the friction torque, respectively. And the experiments reveal that there is a certain grey relation between the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque, viz. MDFR will become the nonlinear increasing trend with the correlation dimension increasing. Under the condition of fewer characteristic data and the lack of prior information about both probability distribution and trends, the unitive evaluation for the nonlinear characteristic and the dynamic uncertainty of the rolling bearing friction torque is realized with the grey confidence level of 87.7%-96.3%.
基金Foundation of China (Nos. 12227805, U1831206, 12103095, 12235012, 12273120, and 11973097)the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. GJJSTD20210009)。
文摘In the future, the Very Large Area gamma-ray Space Telescope is expected to observe high-energy electrons and gamma rays in the MeV to TeV range with unprecedented acceptance. As part of the detector suite, a high-energy imaging calorimeter(HEIC) is currently being developed as a homogeneous calorimeter that utilizes long bismuth germanate(BGO) scintillation crystals as both absorbers and detectors. To accurately measure the energy deposition in the BGO bar of HEIC, a highdynamic-range readout method using a silicon photomultiplier(SiPM) and multiphotodiode(PD) with different active areas has been proposed. A prototype readout system that adopts multichannel charge measurement ASICs was also developed to read out the combined system of SiPMs and PDs. Preliminary tests confirmed the feasibility of the readout scheme, which is expected to have a dynamic range close to 10~6.
基金supported by a grant from Beijing Municipal Commission of Science and Technology of China,No.Z151100000915070
文摘The capability of neurons to discriminate between intensity of external stimulus is measured by its dynamic range.A larger dynamic range indicates a greater probability of neuronal survival.In this study,the potential roles of adaptation mechanisms(ion currents) in modulating neuronal dynamic range were numerically investigated.Based on the adaptive exponential integrate-and-fire model,which includes two different adaptation mechanisms,i.e.subthreshold and suprathreshold(spike-triggered) adaptation,our results reveal that the two adaptation mechanisms exhibit rather different roles in regulating neuronal dynamic range.Specifically,subthreshold adaptation acts as a negative factor that observably decreases the neuronal dynamic range,while suprathreshold adaptation has little influence on the neuronal dynamic range.Moreover,when stochastic noise was introduced into the adaptation mechanisms,the dynamic range was apparently enhanced,regardless of what state the neuron was in,e.g.adaptive or non-adaptive.Our model results suggested that the neuronal dynamic range can be differentially modulated by different adaptation mechanisms.Additionally,noise was a non-ignorable factor,which could effectively modulate the neuronal dynamic range.
文摘A 2.4GHz 0.18μm CMOS gain-switched single-end Low Noise Amplifier (LNA) and a passive mixer with no external balun for near-zero-IF (Intermediate Frequency)/RF (Radio Frequency) applications are described. The LNA, fabricated in the 0.18μm 1P6M CMOS technology, adopts a gain-switched technique to increase the linearity and enlarge the dynamic range. The mixer is an IQ-based passive topology. Measurements of the CMOS chip are performed on the FR-4 PCB and the input is matched to 50Ω. Combining LNA and mixer, the front-end measured performances in high gain state are: -15dB of Sll, 18.5dB of voltage gain, 4.6dB of noise figure, 15dBm of IIP3, 85dBm to -10dBm dynamic range. The full circuit drains 6mA from a 1.8V supply.
基金Project supported by the National Key R&D Program of China(Grant No.2018YFB2002405)the National Natural Science Foundation of China(Grant No.61903013)。
文摘Zero-field single-beam atomic magnetometers with transverse parametric modulation for ultra-weak magnetic field detection have attracted widespread attention recently.In this study,we present a comprehensive response model and propose a modification method of conventional first harmonic response by introducing the second harmonic correction.The proposed modification method gives improvement in dynamic range and reduction of linearity error.Additionally,our modification method shows suppression of response instability caused by optical intensity and frequency fluctuations.An atomic magnetometer with single-beam configuration is built to compare the performance between our proposed method and the conventional method.The results indicate that our method’s magnetic field response signal achieves a 5-fold expansion of dynamic range from 2 nT to 10 nT,with the linearity error decreased from 5%to 1%.Under the fluctuations of 5%for optical intensity and±15 GHz detuning of frequency,the proposed modification method maintains intensityrelated instability less than 1%and frequency-related instability less than 8%while the conventional method suffers 15%and 38%,respectively.Our method is promising for future high-sensitive and long-term stable optically pumped atomic sensors.
基金supported by the National Natural Science Foundation of China (No.61735011)the Science and Technology Research Project of Hebei University (No.QN2017141)the Key Research and Development Program of Hebei Province (No.19251703D)。
文摘The performance of an optical time domain reflectometer(OTDR) is significantly improved using spread spectrum technology. The concept of spread spectrum OTDR(SSOTDR) is proposed, the theoretical basis and simulation results of the new method are given, and the problem of direct application of bipolar spread spectrum codes to OTDR and despreading in the optical domain are solved. The simulation results show the feasibility of the SSOTDR, which exhibits better dynamic range reported to date for a practical long-haul OTDR system without using conventional average technique.
基金This work is financially supported by the NSFC grant of 21475030the S&T Research Project of Anhui Province15czz03109the National 10000 Talents-Youth Top-notch Talent Program.
文摘We report the design of a sensitive,electrochemical aptasensor for detection of ochratoxin A(OTA)with an extraordinary tunable dynamic sensing range.This electrochemical aptasensor is constructed based on the target induced aptamer-folding detection mechanism and the recognition between OTA and its aptamers results in the conformational change of the aptamer probe and thus signal changes for measurement.The dynamic sensing range of the electrochemical aptasensor is successfully tuned by introduction of free assistant aptamer probes in the sensing system.Our electrochemical aptasensor shows an extraordinary dynamic sensing range of 11-order magnitude of OTA concentration from 10^−8 to 10^2 ng/g.Of great significance,the signal response in all OTA concentration ranges is at the same current scale,demonstrating that our sensing protocol in this research could be applied for accurate detections of OTA in a broad range without using any complicated treatment of signal amplification.Finally,OTA spiked red wine and maize samples in different dynamic sensing ranges are determined with the electrochemical aptasensor under optimized sensing conditions.This tuning strategy of dynamic sensing range may offer a promising platform for electrochemical aptasensor optimizations in practical applications.
基金supported by the National Natural Science Foundation of China(No.11374105)
文摘We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting(TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×10~7 cps.
基金Project supported by the National Natural Science Foundation of China(Grant No.11675096)the Fundamental Research Funds for the Central Universities of China(Grant No.GK201702001)the Fund for the Academic Leaders and Academic Backbones,Shaanxi Normal University of China(Grant No.16QNGG007)
文摘Effects of refractory period on the dynamical range in excitable networks are studied by computer simulations and theoretical analysis. The first effect is that the maximum or peak of the dynamical range appears when the largest eigenvalue of adjacent matrix is larger than one. We present a modification of the theory of the critical point by considering the correlation between excited nodes and their neighbors, which is brought by the refractory period. Our analysis provides the interpretation for the shift of the peak of the dynamical range. The effect is negligible when the average degree of the network is large. The second effect is that the dynamical range increases as the length of refractory period increases, and it is independent of the average degree. We present the mechanism of the second effect. As the refractory period increases,the saturated response decreases. This makes the bottom boundary of the dynamical range smaller and the dynamical range extend.
文摘For the optimization of dynamic range and bandwidth of digital intermediate frequency receiver(DIFR), main factors affecting them and their relationships are studied. Firstly, the DIFR sensitivity, bandwidth, noise factor of radio frequency (RF) analog front-end (RFAF), and processing gain of intermediate frequency(IF) sampling are analyzed. Secondly, the constraint relationship of the noise factor of RFAF, the signal-to-noise ratio of ADC and the dynamic range of DIFR are studied. The relationship between the dynamic range and the RFAF gain, and that of the extended dynamic range and the RF AGC(automatic gain control) step are educed and simulated. These results can be used as theory foundations and design references for the implementation and optimization of the large dynamic range and wideband DIFR.
文摘Distortion-free data embedding is a technique which can assure that not only the secret data is correctly extracted but also the cover media is recovered without any distortion after secret data is extracted completely. Because of these advantages, this technique attracts the attention of many researchers. In this paper, a new distortion-free data embedding scheme for high dynamic range (HDR) images is proposed. By depending on Cartesian product, this scheme can obtain higher embedding capacity while maintaining the exactly identical cover image and stego image when using the tone mapping algorithms. In experimental results, the proposed scheme is superior to Yu et aL's scheme in regard to the embedding rate——an average embedding rate of 0.1355 bpp compared with Yn et aL's scheme (0.1270 bpp).
文摘Objective: To study the effects of clinical concentration of sevoflurane on activity of wide dynamic range neurons. Methods: Eight Spraque-Dawley rats(male) were selected. Their spinal cords were exposed and transected at T 9-10 level. The rate of firings of single neurons in the dorsal horn in response to electrical stimulation of skin was recorded with microelectrodes. The early and late discharges were observed when rats inhaled 0.5%, 1.0%, 1.5%, and 2.0% sevoflurane. Results: Sevoflurane suppressed the early and late discharges at the concentration of 0.5%, 1.0%, 1.5%, and 2.0%. Compared with early discharges, the extent of inhibition of late discharges was wider at the concentration of 1%, 1.5%, and 2.0% of sevoflurane. Conclusion: It is indicated that sevoflurane could suppress the transmission of nociceptive and non-nociceptive stimulation at dorsal horn. The suppression on nociceptive imput is stronger than that on non-nociceptive imput when the concentration of sevoflurane is more than 1%.
基金the National Basic Research Program of China(No.2006CB303105)
文摘An effective method for object shape recovery using HDRIs (high dynamic range images) is proposed. The radiance values of each point on the reference sphere and target object are firstly calculated, thus the set of candidate normals of each target point are found by comparing its radiance to that of each reference sphere point. In single-image shape recovery, a smoothness operation is applied to the target normals to obtain a stable and reasonable result; while in photometric stereo, radiance vectors of reference and target objects formed due to illuminations under different fight source directions are directly compared to get the most suitable target normals. Finally, the height values can be recovered from the resulting normal field. Because diffuse and specular reflection are handled in an unified framework with radiance, our approach eliminates the limitation presented in most recovery strategies, i.e., only Lambertian model can be used. The experiment results from the real and synthesized images show the performance of our approach.
文摘Radio Frequency (RF) switch circuit is the basic part of microwave devices and systems. The non-linearity distortion figure is necessary in the field of large dynamic range of signal. This letter analyzes the basic switch circuit and its inter-modulation, and studies in detail the measurement methods and systems of RF switch intercept point. It has provided cascaded simulation testing methods, which can accurately measure the PF switch, of which the second or third order intercept point value is above 75dB and 60dB, respectively. As the testing results are consistent with the theoretical analyses, it proves that the validity of the method satisfies the requirements of large scaled linearity measurement in engineering.
基金Supported by the National Natural Science Foundation of China(No.61308099,61304032)
文摘Due to the existing limited dynamic range a camera cannot reveal all the details in a high-dynamic range scene. In order to solve this problem,this paper presents a multi-exposure fusion method for getting high quality images in high dynamic range scene. First,a set of multi-exposure images is obtained by multiple exposures in a same scene and their brightness condition is analyzed. Then,multi-exposure images under the same scene are decomposed using dual-tree complex wavelet transform( DT-CWT),and their low and high frequency components are obtained. Weight maps according to the brightness condition are assigned to the low components for fusion. Maximizing the region Sum Modified-Laplacian( SML) is adopted for high-frequency components fusing. Finally,the fused image is acquired by subjecting the low and high frequency coefficients to inverse DT-CWT.Experimental results show that the proposed approach generates high quality results with uniform distributed brightness and rich details. The proposed method is efficient and robust in varies scenes.