期刊文献+
共找到418篇文章
< 1 2 21 >
每页显示 20 50 100
Particle swarm optimization-based algorithm of a symplectic method for robotic dynamics and control 被引量:5
1
作者 Zhaoyue XU Lin DU +1 位作者 Haopeng WANG Zichen DENG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第1期111-126,共16页
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this pa... Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics. 展开更多
关键词 ROBOTIC dynamicS MULTIBODY system SYMPLECTIC method particle swarm optimization(PSO)algorithm instantaneous optimal control
在线阅读 下载PDF
Dynamic Optimization Method on Electromechanical Coupling System by Exponential Inertia Weight Particle Swarm Algorithm 被引量:5
2
作者 LI Qiang WU Jianxin SUN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第4期602-607,共6页
Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design para... Dynamic optimization of electromechanical coupling system is a significant engineering problem in the field of mechatronics. The performance improvement of electromechanical equipment depends on the system design parameters. Aiming at the spindle unit of refitted machine tool for solid rocket, the vibration acceleration of tool is taken as objective function, and the electromechanical system design parameters are appointed as design variables. Dynamic optimization model is set up by adopting Lagrange-Maxwell equations, Park transform and electromechanical system energy equations. In the procedure of seeking high efficient optimization method, exponential function is adopted to be the weight function of particle swarm optimization algorithm. Exponential inertia weight particle swarm algorithm(EPSA), is formed and applied to solve the dynamic optimization problem of electromechanical system. The probability density function of EPSA is presented and used to perform convergence analysis. After calculation, the optimized design parameters of the spindle unit are obtained in limited time period. The vibration acceleration of the tool has been decreased greatly by the optimized design parameters. The research job in the paper reveals that the problem of dynamic optimization of electromechanical system can be solved by the method of combining system dynamic analysis with reformed swarm particle optimizati on. Such kind of method can be applied in the design of robots, NC machine, and other electromechanical equipments. 展开更多
关键词 particle swarm algorithm electromechanical coupling system dynamic optimization
在线阅读 下载PDF
Dynamic Multi-objective Optimization of Chemical Processes Using Modified BareBones MOPSO Algorithm
3
作者 杜文莉 王珊珊 +1 位作者 陈旭 钱锋 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期184-189,共6页
Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is pro... Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems. 展开更多
关键词 dynamic multi-objective optimization bare-bones particle swarm optimization(PSO) algorithm chemical process
在线阅读 下载PDF
Structural optimization strategy of pipe isolation tool by dynamic plugging process analysis 被引量:3
4
作者 Ting-Ting Wu Hong Zhao +1 位作者 Bo-Xuan Gao Fan-Bo Meng 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1829-1839,共11页
During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce ... During the pipeline plugging process,both the pipeline and the pipe isolation tool(PIT)will be greatly damaged,due to the violent vibration of the flow field.In this study,it was proposed for the first time to reduce the vibration of the flow field during the plugging process by optimizing the surface structure of the PIT.Firstly,the central composite design(CCD)was used to obtain the optimization schemes,and the drag coefficient and pressure coefficient were proposed to evaluate the degree of flow field changes.Secondly,a series of computational fluid dynamics(CFD)simulations were performed to obtain the drag coefficient and pressure coefficient during dynamic plugging.And the mathematical model of drag coefficient and pressure coefficient with the surface structure of the PIT were established respectively.Then,a modified particle swarm optimization(PSO)was applied to predict the optimal value of the surface structure of the PIT.Finally,an experimental rig was built to verify the effectiveness of the optimization.The results showed that the improved method could reduce the flow field vibration by 49.56%.This study provides a reference for the design of the PIT surface structure for flow field vibration technology. 展开更多
关键词 Pipe isolation tool dynamic analysis Drag coefficient Pressure coefficient Modified particle swarm optimization algorithm
原文传递
Research on Optimization of Freight Train ATO Based on Elite Competition Multi-Objective Particle Swarm Optimization 被引量:1
5
作者 Lingzhi Yi Renzhe Duan +3 位作者 Wang Li Yihao Wang Dake Zhang Bo Liu 《Energy and Power Engineering》 2021年第4期41-51,共11页
<div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics ... <div style="text-align:justify;"> In view of the complex problems that freight train ATO (automatic train operation) needs to comprehensively consider punctuality, energy saving and safety, a dynamics model of the freight train operation process is established based on the safety and the freight train dynamics model in the process of its operation. The algorithm of combining elite competition strategy with multi-objective particle swarm optimization technology is introduced, and the winning particles are obtained through the competition between two elite particles to guide the update of other particles, so as to balance the convergence and distribution of multi-objective particle swarm optimization. The performance comparison experimental results verify the superiority of the proposed algorithm. The simulation experiments of the actual line verify the feasibility of the model and the effectiveness of the proposed algorithm. </div> 展开更多
关键词 Freight Train Automatic Train Operation dynamics Model Competitive Multi-Objective Particle swarm optimization algorithm (CMOPSO) Multi-Objective optimization
在线阅读 下载PDF
Optimal Design of Fuzzy-AGC Based on PSO&RCGA to Improve Dynamic Stability of Interconnected Multi-area Power Systems 被引量:1
6
作者 Ali Darvish Falehi 《International Journal of Automation and computing》 EI CSCD 2020年第4期599-609,共11页
Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this r... Quickly getting back the synchronism of a disturbed interconnected multi-area power system due to variations in loading condition is recognized as prominent issue related to automatic generation control(AGC).In this regard,AGC system based on fuzzy logic,i.e.,so-called FLAGC can introduce an effectual performance to suppress the dynamic oscillations of tie-line power exchanges and frequency in multi-area interconnected power system.Apart from that,simultaneous coordination scheme based on particle swarm optimization(PSO)along with real coded genetic algorithm(RCGA)is suggested to coordinate FLAGCs of the all areas.To clarify the high efficiency of aforementioned strategy,two different interconnected multi-area power systems,i.e.,three-area hydro-thermal power system and five-area thermal power system have been taken into account for relevant studies.The potency of this strategy has been thoroughly dealt with by considering the step load perturbation(SLP)in both the under study power systems.To sum up,the simulation results have plainly revealed dynamic performance of FLAGC as compared with conventional AGC(CAGC)in each power system in order to damp out the power system oscillations. 展开更多
关键词 Power system dynamic stability fuzzy logic automatic generation control(FLAGC) particle swarm optimization(PSO) real coded genetic algorithm(RCGA) simultaneous coordination scheme
原文传递
Improved Prediction of Metamaterial Antenna Bandwidth Using Adaptive Optimization of LSTM 被引量:1
7
作者 Doaa Sami Khafaga Amel Ali Alhussan +4 位作者 El-Sayed M.El-kenawy Abdelhameed Ibrahim Said H.Abd Elkhalik Shady Y.El-Mashad Abdelaziz A.Abdelhamid 《Computers, Materials & Continua》 SCIE EI 2022年第10期865-881,共17页
The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant... The design of an antenna requires a careful selection of its parameters to retain the desired performance.However,this task is time-consuming when the traditional approaches are employed,which represents a significant challenge.On the other hand,machine learning presents an effective solution to this challenge through a set of regression models that can robustly assist antenna designers to find out the best set of design parameters to achieve the intended performance.In this paper,we propose a novel approach for accurately predicting the bandwidth of metamaterial antenna.The proposed approach is based on employing the recently emerged guided whale optimization algorithm using adaptive particle swarm optimization to optimize the parameters of the long-short-term memory(LSTM)deep network.This optimized network is used to retrieve the metamaterial bandwidth given a set of features.In addition,the superiority of the proposed approach is examined in terms of a comparison with the traditional multilayer perceptron(ML),Knearest neighbors(K-NN),and the basic LSTM in terms of several evaluation criteria such as root mean square error(RMSE),mean absolute error(MAE),and mean bias error(MBE).Experimental results show that the proposed approach could achieve RMSE of(0.003018),MAE of(0.001871),and MBE of(0.000205).These values are better than those of the other competing models. 展开更多
关键词 Metamaterial antenna long short term memory(LSTM) guided whale optimization algorithm(Guided WOA) adaptive dynamic particle swarm algorithm(AD-PSO)
在线阅读 下载PDF
Interactive Heuristic D* Path Planning Solution Based on PSO for Two-Link Robotic Arm in Dynamic Environment
8
作者 Firas A. Raheem Umniah I. Hameed 《World Journal of Engineering and Technology》 2019年第1期80-99,共20页
This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at eve... This paper is devoted to find an intelligent and safe path for two-link robotic arm in dynamic environment. This paper focuses on computational part of motion planning in completely changing dynamic environment at every motion sample domains,?since the local minima and sharp edges are the most common problems in all path planning algorithms. In addition, finding a path solution in a dynamic environment represents a challenge for the robotics researchers,?so in this paper, a proposed mixing approach was suggested to overcome all these obstructions. The proposed approach methodology?for obtaining robot interactive path planning solution in known dynamic environment utilizes?the use of modified heuristic D-star (D*) algorithm based on the full free Cartesian space analysis at each motion sample with the Particle Swarm Optimization (PSO) technique.?Also, a modification on the?D* algorithm has been done to match the dynamic environment requirements by adding stop and return backward cases which is not included in the original D* algorithm theory. The resultant interactive path solution was computed by taking into consideration the time and position changes of the moving obstacles. Furthermore, to insure the enhancement of the?final path length optimality, the PSO technique was used.?The simulation results are given to show the effectiveness of the proposed method. 展开更多
关键词 D* algorithm Particle swarm optimization (PSO) Path Planning TWO-LINK Arm KNOWN dynamic Environment
在线阅读 下载PDF
Dynamic Allocation of Manufacturing Tasks and Resources in Shared Manufacturing
9
作者 Caiyun Liu Peng Liu 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3221-3242,共22页
Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tas... Shared manufacturing is recognized as a new point-to-point manufac-turing mode in the digital era.Shared manufacturing is referred to as a new man-ufacturing mode to realize the dynamic allocation of manufacturing tasks and resources.Compared with the traditional mode,shared manufacturing offers more abundant manufacturing resources and flexible configuration options.This paper proposes a model based on the description of the dynamic allocation of tasks and resources in the shared manufacturing environment,and the characteristics of shared manufacturing resource allocation.The execution of manufacturing tasks,in which candidate manufacturing resources enter or exit at various time nodes,enables the dynamic allocation of manufacturing tasks and resources.Then non-dominated sorting genetic algorithm(NSGA-II)and multi-objective particle swarm optimization(MOPSO)algorithms are designed to solve the model.The optimal parameter settings for the NSGA-II and MOPSO algorithms have been obtained according to the experiments with various population sizes and iteration numbers.In addition,the proposed model’s efficiency,which considers the entries and exits of manufacturing resources in the shared manufacturing environment,is further demonstrated by the overlap between the outputs of the NSGA-II and MOPSO algorithms for optimal resource allocation. 展开更多
关键词 Shared manufacturing dynamic allocation variation of resources non-dominated sorting genetic algorithm(NSGA-II) multi-objective particle swarm optimization(MOPSO)algorithm
在线阅读 下载PDF
基于INSPSO-INC算法的光伏MPPT控制策略 被引量:4
10
作者 陈刚 刘旭阳 +1 位作者 李国雄 刘亚雄 《智慧电力》 北大核心 2025年第2期58-64,共7页
在部分阴影条件(PSC)下,光伏阵列呈现高度非线性的功率-电压特性。针对经典粒子群算法(PSO)易陷入局部最优、输出稳定后出现功率波动等问题,提出一种基于改进的自然选择粒子群算法(INSPSO)结合增量电导法(INC)的光伏最大功率点追踪(MPPT... 在部分阴影条件(PSC)下,光伏阵列呈现高度非线性的功率-电压特性。针对经典粒子群算法(PSO)易陷入局部最优、输出稳定后出现功率波动等问题,提出一种基于改进的自然选择粒子群算法(INSPSO)结合增量电导法(INC)的光伏最大功率点追踪(MPPT)控制策略。研究引入动态惯性权重、异步学习因子和自然选择机制,在分析寻优过程中对惯性权重和学习因子实时调整,并对群体进行自然选择操作以提高算法的全局寻优性能。仿真分析表明,所提算法在收敛速度和精度方面优势明显,且在追踪到最大功率点后的输出功率更平稳。 展开更多
关键词 光伏阵列 MPPT 动态部分遮阴 自然选择粒子群算法
在线阅读 下载PDF
自适应混合粒子群优化DMC及其在脱硫系统中的应用
11
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
异构差分进化混合动态分级粒子群的任务分配方法研究
12
作者 杨玉 李颖 +1 位作者 李建军 耿超龙 《计算机工程与应用》 北大核心 2025年第20期157-169,共13页
物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力... 物流运输中任务分配环节在现代供应链中起着至关重要的作用,合理高效的任务分配策略对于提升整体配送效率和资源利用水平具有重要意义。针对传统粒子群优化算法在求解物流运输任务分配问题时存在动态适应性弱,易陷入局部最优和搜索能力不均衡等问题,提出一种异构差分进化混合动态分级粒子群优化的任务分配方法,用于解决复杂的物流运输任务分配问题。采用两种差分进化突变体,在不同进化阶段平衡种群的探索与开发;引入分级粒子群框架,依据粒子适应度动态划分种群层次,并通过竞争-协作机制在不同粒子层级之间实现高效信息传递,增强全局搜索能力;同时结合参数动态调整机制增强物流运输任务分配的全局搜索能力。将所提算法与多种优化算法分别在不同规模的30个测试用例和现实物流运输数据集“Amazon Delivery Dataset”上进行对比实验,验证了异构差分进化混合动态分级粒子群算法能够更高效地解决物流运输任务分配问题,并且在路径优化、收敛速度和解的稳定性方面均表现出更优性能。 展开更多
关键词 异构差分进化 混合动态分级 粒子群优化算法 任务分配方法
在线阅读 下载PDF
基于PID的液位控制系统优化设计 被引量:1
13
作者 孙永芳 《机械设计与制造工程》 2025年第8期29-33,共5页
针对传统PID控制在单容水箱液位控制系统中存在抗扰动能力弱、参数固化以及非线性适应性差等问题,提出一种融合模糊PID控制、粒子群算法与BP神经网络的液位控制系统优化方法。首先以模糊PID控制为底层控制逻辑,通过粒子群算法对模糊PID... 针对传统PID控制在单容水箱液位控制系统中存在抗扰动能力弱、参数固化以及非线性适应性差等问题,提出一种融合模糊PID控制、粒子群算法与BP神经网络的液位控制系统优化方法。首先以模糊PID控制为底层控制逻辑,通过粒子群算法对模糊PID的初始参数进行调节,同时结合BP神经网络进行非线性扰动的动态补偿;其次设计仿真实验对优化系统的性能进行验证。实验结果表明,所提方法的液位控制曲线更加接近目标输出曲线,阀门开度陡增20%的扰动测试中,液位波动为0.03 m,稳态恢复时间为0.9 s;阀门开度突降30%的扰动测试中,液位波动为0.04 m,稳态恢复时间为1.0 s,整体性能更加稳定,液位控制精确。 展开更多
关键词 模糊PID控制 水箱液位控制 粒子群算法 BP神经网络 动态控制
在线阅读 下载PDF
分布式制造场景下的多类型生产服务资源动态配置
14
作者 裴植 吕珊珊 +1 位作者 胡盈盈 张聿 《计算机集成制造系统》 北大核心 2025年第10期3721-3732,共12页
在制造业服务化模式下,针对制造订单的高波动和时变特性,构建了一种面向多类型生产服务的排队网络模型,用以解决分布式制造场景下具有系统性能约束的资源配置优化问题,以保证制造资源的合理使用及制造服务水平的稳定可控。由于多类型生... 在制造业服务化模式下,针对制造订单的高波动和时变特性,构建了一种面向多类型生产服务的排队网络模型,用以解决分布式制造场景下具有系统性能约束的资源配置优化问题,以保证制造资源的合理使用及制造服务水平的稳定可控。由于多类型生产的价格、服务速率、放弃成本和放弃速率具有异构性,采用Tent混沌映射初始化种群,引入基于排队系统状态自适应调整的惯性权重和学习因子,并融入模拟退火算法的Metropolis准则,提出了一种多策略改进的粒子群算法(MIPSO),以实现制造资源的合理配置并最大化制造平台利润。此外,研究发现分布式制造平台在资源配置时须考虑企业和用户的预算限制并设定合适的资源上限。最后,通过数值实验证明了所提模型与算法的有效性,为分布式制造服务网络的资源配置提供了理论支持与管理洞见。 展开更多
关键词 分布式制造 排队网络模型 资源动态配置 粒子群算法 模拟退火算法
在线阅读 下载PDF
基于种群合作的列车自适应多目标流量动态调度算法研究
15
作者 陈永刚 文凤 《铁道科学与工程学报》 北大核心 2025年第12期5291-5300,共10页
随着列车车载系统承载的数据量及类型不断增加,流量的实时调度成为列车安全可靠运行的关键因素之一,尤其是在突发流量及高负载环境下。传统的多目标优化算法易陷入局部最优,在异常情况下难以兼顾实时性与可靠性的流量自适应调度调整,导... 随着列车车载系统承载的数据量及类型不断增加,流量的实时调度成为列车安全可靠运行的关键因素之一,尤其是在突发流量及高负载环境下。传统的多目标优化算法易陷入局部最优,在异常情况下难以兼顾实时性与可靠性的流量自适应调度调整,导致列车通信网络传输受限。为解决上述问题,提出一种基于种群合作的列车自适应多目标流量动态调度算法。在该算法中,基于构建的动态调度模型,种群根据粒子的不同特性被划分为3个区域,并动态调整各个区域的粒子数量,优化全局搜索能力。结合外部存档和限制交配机制,利用存档集中高质量的可行解与高价值的不可行解进行交叉变异,增强潜在解的挖掘能力。最后,从性能优化和负载下路由重构2个方面对优化目标进行评估分析。实验结果表明,与其他多种多目标优化算法相比,在性能优化方面,其总目标函数值在高负载下稳定在0.24371,平均响应时间降低到0.39215 ms,较其余算法得到的最优数据改善了4.94%;在流量激增和流量密集的异常情况下,其平均响应时间分别为0.48763 ms、0.42518 ms,较其余算法得到的最优数据分别降低了4.47%、1.88%。由此可得,所提出的优化算法在改善子网动态调度实时性及鲁棒性方面具有更大优势,且满足列车通信网络流量调度的需求。研究结果为列车通信网络的异常流量处理提供了一种解决方案,提升了列车运行的可靠性。 展开更多
关键词 列车通信网络 动态调度 粒子群算法 多目标优化 种群合作
在线阅读 下载PDF
基于数字孪生的电极箔化成车间调度系统研究 被引量:1
16
作者 左怡鑫 袁逸萍 +1 位作者 朱广贺 刘鹏飞 《机床与液压》 北大核心 2025年第15期71-78,共8页
化成工艺是电极箔生产过程中的关键工艺环节。为了应对化成车间作业过程中的扰动事件,如紧急插单和生产过程信息监控不足等,导致生产偏离原调度计划且无法快速响应这些扰动问题,提出一种基于数字孪生的电极箔化成车间动态调度方法。通... 化成工艺是电极箔生产过程中的关键工艺环节。为了应对化成车间作业过程中的扰动事件,如紧急插单和生产过程信息监控不足等,导致生产偏离原调度计划且无法快速响应这些扰动问题,提出一种基于数字孪生的电极箔化成车间动态调度方法。通过构建电极箔化成车间动态调度数字孪生框架及其相应的数学模型,加快物理车间与虚拟车间的实时交互,以提升调度效率。针对化成车间生产调度问题,设计改进粒子群算法对调度问题进行求解。最后,以企业实际的紧急插单为例,验证了动态调度系统与改进粒子群算法在解决化成车间动态调度问题时的有效性。 展开更多
关键词 数字孪生 化成车间 动态调度 改进粒子群算法
在线阅读 下载PDF
基于视觉传达技术的人机交互界面优化设计研究 被引量:3
17
作者 刘陈昂 魏任雄 《电子设计工程》 2025年第3期24-28,33,共6页
为了提升人机交互界面的布局合理性,增强用户满意度,研究基于视觉传达技术的人机交互界面优化设计方法。利用三维空间重建方法,从人机交互界面视觉传达图像的中心点出发,依据视觉传达图像平行曲线的中心以及局部脊线,三维重建视觉传达... 为了提升人机交互界面的布局合理性,增强用户满意度,研究基于视觉传达技术的人机交互界面优化设计方法。利用三维空间重建方法,从人机交互界面视觉传达图像的中心点出发,依据视觉传达图像平行曲线的中心以及局部脊线,三维重建视觉传达图像。计算视觉传达图像三维重建结果中各视觉感知元素的视觉传达指数。以人机交互界面的视觉传达指数最大为目标,构建人机交互界面优化模型。选取粒子群算法求解人机交互界面优化模型,引入动态惯性权重改进粒子群算法,输出人机交互界面的优化设计方案。实验结果表明,该方法能够实现人机交互界面中视觉感知元素的高效布局,人机交互界面优化设计后的峰值信噪比高于30 dB。 展开更多
关键词 视觉传达技术 人机交互 界面优化设计 三维重建 粒子群算法 动态惯性权重
在线阅读 下载PDF
云网融合环境下组合服务的动态重构
18
作者 刘坤 张鹏程 +1 位作者 金惠颖 吉顺慧 《计算机工程》 北大核心 2025年第5期206-218,共13页
随着云计算与空天地海一体化通信网络的深度融合,各种复杂应用场景的出现使得组合服务的种类和数量急剧增多,结构也变得复杂。在云网融合环境下,用户移动设备和边缘服务器等硬件能力有限,能耗问题成为组合服务进行动态重构不可忽略的重... 随着云计算与空天地海一体化通信网络的深度融合,各种复杂应用场景的出现使得组合服务的种类和数量急剧增多,结构也变得复杂。在云网融合环境下,用户移动设备和边缘服务器等硬件能力有限,能耗问题成为组合服务进行动态重构不可忽略的重要因素。此外,传统方法并未考虑空天地海不同场景下用户对不同服务质量(QoS)属性需求的差异性,使得组合服务的交付结果并不令人满意。为了解决上述问题,提出一种基于多目标粒子群优化(PSO)的组合服务动态重构方法。该方法首先根据重构原子服务的三维空间地理位置和功能进行聚类,有效解决在云网融合环境下服务规模庞大情况下的搜索空间爆炸问题;然后通过能耗计算模型得到服务调用的综合能耗,并将其作为动态重构的优化目标之一,结合服务的多种QoS属性进行多目标寻优,最终生成符合用户需求且能耗较低的重构方案。实验结果表明,该方法在云网融合环境下节约能耗和应对较大候选服务集规模等方面具有较优性能。 展开更多
关键词 云网融合 多目标粒子群优化算法 组合服务 动态重构 服务质量
在线阅读 下载PDF
基于级联阈值调控的智能体群火力分配模型
19
作者 闫振华 闫振宇 +3 位作者 宋亚飞 王景田 白天旭 刘伟 《航空兵器》 北大核心 2025年第6期51-60,共10页
针对复杂环境下火力分配决策面临的实时决策效率低、多约束耦合及威胁响应滞后等关键问题,提出了一种基于分层递阶式智能融合架构的级联阈值调控模型。首先建立了双目标优化模型:目标一采用动态权重分配策略,实现拦截效能与弹药消耗成... 针对复杂环境下火力分配决策面临的实时决策效率低、多约束耦合及威胁响应滞后等关键问题,提出了一种基于分层递阶式智能融合架构的级联阈值调控模型。首先建立了双目标优化模型:目标一采用动态权重分配策略,实现拦截效能与弹药消耗成本的最优权衡;目标二引入时间节点参数,精确刻画双方相对运动对火力通道占用状态的动态影响,并建立决策变量耦合关系形成闭环反馈机制。在算法实现层面,创新性构建了一种双阶段智能求解框架,该框架有机融合了匈牙利算法的精确匹配特性与粒子群优化算法的全局搜索能力,两个阶段通过动态反馈机制实现协同优化。实验结果表明,所提模型在1000次蒙特卡洛仿真中较传统方法减少18.9%的弹药冗余消耗,增大15.6%的拦截效率,充分体现了该模型对于高密度对抗环境的强适应型以及高效性。 展开更多
关键词 级联阈值调控模型 双目标优化 动态权重分配 匈牙利算法 粒子群优化算法
在线阅读 下载PDF
基于PSO-BP-PID的动力系统动态负载模拟研究 被引量:1
20
作者 彭达 孙晓帮 张华成 《农业装备与车辆工程》 2025年第7期99-105,共7页
为提升汽车动力台架实验中道路行驶动态负载模拟精度,提出PSO算法与BP神经网络PID控制的复合策略用于负载模拟控制。基于MATLAB/Simulink构建电动汽车动力总成及台架系统动力学模型,采用转速与转矩复合控制;通过BP神经网络实时自适应优... 为提升汽车动力台架实验中道路行驶动态负载模拟精度,提出PSO算法与BP神经网络PID控制的复合策略用于负载模拟控制。基于MATLAB/Simulink构建电动汽车动力总成及台架系统动力学模型,采用转速与转矩复合控制;通过BP神经网络实时自适应优化PID参数构建BP-PID控制算法,再引入PSO算法对BP神经网络初始权值和PID参数基准全局寻优,形成PSO-BP-PID控制算法。搭建HIL测试系统验证表明,该策略较传统PID控制显著增强系统稳定性,提升响应速度与模拟精度,为高精度负载模拟提供参考方案。 展开更多
关键词 台架控制 动态负载模拟 BP神经网络 粒子群优化算法
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部