期刊文献+
共找到358篇文章
< 1 2 18 >
每页显示 20 50 100
Harnessing Trend Theory to Enhance Distributed Proximal Point Algorithm Approaches for Multi-Area Economic Dispatch Optimization
1
作者 Yaming Ren Xing Deng 《Computers, Materials & Continua》 2025年第3期4503-4533,共31页
The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessi... The exponential growth in the scale of power systems has led to a significant increase in the complexity of dispatch problem resolution,particularly within multi-area interconnected power grids.This complexity necessitates the employment of distributed solution methodologies,which are not only essential but also highly desirable.In the realm of computational modelling,the multi-area economic dispatch problem(MAED)can be formulated as a linearly constrained separable convex optimization problem.The proximal point algorithm(PPA)is particularly adept at addressing such mathematical constructs effectively.This study introduces parallel(PPPA)and serial(SPPA)variants of the PPA as distributed algorithms,specifically designed for the computational modelling of the MAED.The PPA introduces a quadratic term into the objective function,which,while potentially complicating the iterative updates of the algorithm,serves to dampen oscillations near the optimal solution,thereby enhancing the convergence characteristics.Furthermore,the convergence efficiency of the PPA is significantly influenced by the parameter c.To address this parameter sensitivity,this research draws on trend theory from stock market analysis to propose trend theory-driven distributed PPPA and SPPA,thereby enhancing the robustness of the computational models.The computational models proposed in this study are anticipated to exhibit superior performance in terms of convergence behaviour,stability,and robustness with respect to parameter selection,potentially outperforming existing methods such as the alternating direction method of multipliers(ADMM)and Auxiliary Problem Principle(APP)in the computational simulation of power system dispatch problems.The simulation results demonstrate that the trend theory-based PPPA,SPPA,ADMM and APP exhibit significant robustness to the initial value of parameter c,and show superior convergence characteristics compared to the residual balancing ADMM. 展开更多
关键词 Multi-area economic dispatch problem proximal point algorithm trend theory
在线阅读 下载PDF
Comparison of two kinds of approximate proximal point algorithms for monotone variational inequalities
2
作者 陶敏 《Journal of Southeast University(English Edition)》 EI CAS 2008年第4期537-540,共4页
This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper ... This paper proposes two kinds of approximate proximal point algorithms (APPA) for monotone variational inequalities, both of which can be viewed as two extended versions of Solodov and Svaiter's APPA in the paper "Error bounds for proximal point subproblems and associated inexact proximal point algorithms" published in 2000. They are both prediction- correction methods which use the same inexactness restriction; the only difference is that they use different search directions in the correction steps. This paper also chooses an optimal step size in the two versions of the APPA to improve the profit at each iteration. Analysis also shows that the two APPAs are globally convergent under appropriate assumptions, and we can expect algorithm 2 to get more progress in every iteration than algorithm 1. Numerical experiments indicate that algorithm 2 is more efficient than algorithm 1 with the same correction step size, 展开更多
关键词 monotone variational inequality approximate proximate point algorithm inexactness criterion
在线阅读 下载PDF
PROXIMAL POINT ALGORITHM WITH ERRORS FOR GENERALIZED STRONGLY NONLINEARQUASIVARIATIONAL INCLUSIONS 被引量:1
3
作者 丁协平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1998年第7期637-643,共7页
In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an exis... In this paper, a class of generalized strongly nonlinear quasivariational inclusions are studied. By using the properties of the resolvent operator associated with a maximal monotone; mapping in Hilbert space, an existence theorem of solutions for generalized strongly nonlinear quasivariational inclusion is established and a new proximal point algorithm with errors is suggested for finding approximate solutions which strongly converge to the exact solution of the generalized strongly, nonlinear quasivariational inclusion. As special cases, some known results in this field are also discussed. 展开更多
关键词 generalized strongly nonlinear quasivariational inclusion proximal point algorithm with errors
在线阅读 下载PDF
Comparison of two approximal proximal point algorithms for monotone variational inequalities 被引量:1
4
作者 TAO Min 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期969-977,共9页
Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approx... Proximal point algorithms (PPA) are attractive methods for solving monotone variational inequalities (MVI). Since solving the sub-problem exactly in each iteration is costly or sometimes impossible, various approximate versions ofPPA (APPA) are developed for practical applications. In this paper, we compare two APPA methods, both of which can be viewed as prediction-correction methods. The only difference is that they use different search directions in the correction-step. By extending the general forward-backward splitting methods, we obtain Algorithm Ⅰ; in the same way, Algorithm Ⅱ is proposed by spreading the general extra-gradient methods. Our analysis explains theoretically why Algorithm Ⅱ usually outperforms Algorithm Ⅰ. For computation practice, we consider a class of MVI with a special structure, and choose the extending Algorithm Ⅱ to implement, which is inspired by the idea of Gauss-Seidel iteration method making full use of information about the latest iteration. And in particular, self-adaptive techniques are adopted to adjust relevant parameters for faster convergence. Finally, some numerical experiments are reported on the separated MVI. Numerical results showed that the extending Algorithm II is feasible and easy to implement with relatively low computation load. 展开更多
关键词 Projection and contraction methods proximal point algorithm (PPA) Approximate PPA (APPA) Monotone variational inequality (MVI) Prediction and correction
在线阅读 下载PDF
MODIFIED APPROXIMATE PROXIMAL POINT ALGORITHMS FOR FINDING ROOTS OF MAXIMAL MONOTONE OPERATORS
5
作者 曾六川 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2004年第3期293-301,共9页
In order to find roots of maximal monotone operators, this paper introduces and studies the modified approximate proximal point algorithm with an error sequence {e k} such that || ek || \leqslant hk || xk - [(x)\tilde... In order to find roots of maximal monotone operators, this paper introduces and studies the modified approximate proximal point algorithm with an error sequence {e k} such that || ek || \leqslant hk || xk - [(x)\tilde]k ||\left\| { e^k } \right\| \leqslant \eta _k \left\| { x^k - \tilde x^k } \right\| with ?k = 0¥ ( hk - 1 ) < + ¥\sum\limits_{k = 0}^\infty {\left( {\eta _k - 1} \right)} and infk \geqslant 0 hk = m\geqslant 1\mathop {\inf }\limits_{k \geqslant 0} \eta _k = \mu \geqslant 1 . Here, the restrictions on {η k} are very different from the ones on {η k}, given by He et al (Science in China Ser. A, 2002, 32 (11): 1026–1032.) that supk \geqslant 0 hk = v < 1\mathop {\sup }\limits_{k \geqslant 0} \eta _k = v . Moreover, the characteristic conditions of the convergence of the modified approximate proximal point algorithm are presented by virtue of the new technique very different from the ones given by He et al. 展开更多
关键词 modified approximate proximal point algorithm maximal monotone operator CONVERGENCE
在线阅读 下载PDF
On Over-Relaxed Proximal Point Algorithms for Generalized Nonlinear Operator Equation with (A,η,m)-Monotonicity Framework
6
作者 Fang Li 《International Journal of Modern Nonlinear Theory and Application》 2012年第3期67-72,共6页
In this paper, a new class of over-relaxed proximal point algorithms for solving nonlinear operator equations with (A,η,m)-monotonicity framework in Hilbert spaces is introduced and studied. Further, by using the gen... In this paper, a new class of over-relaxed proximal point algorithms for solving nonlinear operator equations with (A,η,m)-monotonicity framework in Hilbert spaces is introduced and studied. Further, by using the generalized resolvent operator technique associated with the (A,η,m)-monotone operators, the approximation solvability of the operator equation problems and the convergence of iterative sequences generated by the algorithm are discussed. Our results improve and generalize the corresponding results in the literature. 展开更多
关键词 New Over-Relaxed proximal Point algorithm Nonlinear OPERATOR Equation with (A η m)-Monotonicity FRAMEWORK Generalized RESOLVENT OPERATOR Technique Solvability and Convergence
在线阅读 下载PDF
多目标Proximal-Gradient算法的收敛性分析
7
作者 张世豪 张露方 李尹 《杭州师范大学学报(自然科学版)》 2025年第6期657-663,共7页
为研究求解无约束多目标优化问题的Proximal-Gradient算法的收敛性问题,对经典Polyak-Lojasiewicz不等式(P-L不等式)、近点P-L不等式及多目标近点P-L不等式进行推广,引入了带有指数的多目标近点P-L不等式(多目标广义近点P-L不等式).在... 为研究求解无约束多目标优化问题的Proximal-Gradient算法的收敛性问题,对经典Polyak-Lojasiewicz不等式(P-L不等式)、近点P-L不等式及多目标近点P-L不等式进行推广,引入了带有指数的多目标近点P-L不等式(多目标广义近点P-L不等式).在目标函数的可微部分满足梯度Lipschitz连续条件,以及多目标广义P-L不等式成立的条件下,得到了Proximal-Gradient算法的收敛性结果,并在引入指数为1的情况下,得到了Proximal-Gradient算法的线性收敛性. 展开更多
关键词 多目标优化 proximal-Gradient算法 收敛速率 线性收敛
在线阅读 下载PDF
Proximal point algorithm for a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings
8
作者 李红刚 《Journal of Chongqing University》 CAS 2008年第1期79-84,共6页
We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approx... We introduced a new class of fuzzy set-valued variational inclusions with (H,η)-monotone mappings. Using the resolvent operator method in Hilbert spaces, we suggested a new proximal point algorithm for finding approximate solutions, which strongly converge to the exact solution of a fuzzy set-valued variational inclusion with (H,η)-monotone. The results improved and generalized the general quasi-variational inclusions with fuzzy set-valued mappings proposed by Jin and Tian Jin MM, Perturbed proximal point algorithm for general quasi-variational inclusions with fuzzy set-valued mappings, OR Transactions, 2005, 9(3): 31-38, (In Chinese); Tian YX, Generalized nonlinear implicit quasi-variational inclusions with fuzzy mappings, Computers & Mathematics with Applications, 2001, 42: 101-108. 展开更多
关键词 variational inclusion (H η)-monotone mapping resolvent operator technique fuzzy set-valued mapping proximal point algorithm convergence of numerical methods
在线阅读 下载PDF
Improved pruning algorithm for Gaussian mixture probability hypothesis density filter 被引量:8
9
作者 NIE Yongfang ZHANG Tao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期229-235,共7页
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ... With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones. 展开更多
关键词 Gaussian mixture probability hypothesis density(GM-PHD) filter pruning algorithm proximity targets clutter rate
在线阅读 下载PDF
Existence and algorithm of solutions for a system of generalized mixed implicit equilibrium problems in Banach spaces
10
作者 丁协平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第9期1049-1062,共14页
A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is intro... A new system of generalized mixed implicit equilibrium problems is introduced and studied in Banach spaces. First, the notion of the Yosida proximal mapping for generalized mixed implicit equilibrium problems is introduced. By using the notion, a system of generalized equation problems is considered, and its equivalence with the system of generalized mixed implicit equilibrium problems is also proved. Next, by applying the system of generalized equation problems, we suggest and analyze an iterative algorithm to compute the approximate solutions of the system of generalized mixed implicit equilibrium problems. The strong convergence of the iterative sequences generated by the algorithm is proved under quite mild conditions. The results are new and unify and generalize some recent results in this field. 展开更多
关键词 generalized mixed implicit equilibrium problem Yosida proximal mapping generalized equation problem iterative algorithm Banach space
在线阅读 下载PDF
决策学习型蜣螂优化算法的无人机协同路径规划 被引量:2
11
作者 张乐 胡毅文 +2 位作者 杨红 杨超 马宏远 《计算机应用研究》 北大核心 2025年第1期196-204,共9页
针对多无人机协同路径规划问题,提出了一种决策学习型蜣螂优化算法(DLDBO)。传统蜣螂优化算法(DBO)种群之间缺乏信息互换,容易陷入局部最优解。因此,利用Pearson相关系数计算个体之间的相似性,通过相似性指标判断并作出决策:若不相似,... 针对多无人机协同路径规划问题,提出了一种决策学习型蜣螂优化算法(DLDBO)。传统蜣螂优化算法(DBO)种群之间缺乏信息互换,容易陷入局部最优解。因此,利用Pearson相关系数计算个体之间的相似性,通过相似性指标判断并作出决策:若不相似,利用折射反向学习计算得到候选解,在一定程度上提高个体之间影响的同时增强算法跳出局部最优的能力;若相似,利用所提出的链式邻近学习引导蜣螂个体,增加影响个体更新的因素,充分促进个体之间的信息交流。在CEC2017测试套件的29个测试函数上进行了充分的对比实验,结果表明,DLDBO性能明显优于其他六种先进的变体算法。利用DLDBO规划无人机群的飞行路径,最终能够得到较为理想的协同路径并且有效避开威胁,优于其余三种优秀的协同路径规划算法,满足了无人机协同飞行的需求。 展开更多
关键词 蜣螂优化算法 折射反向学习 链式邻近学习 无人机协同路径规划
在线阅读 下载PDF
基于深度强化学习的游戏智能引导算法 被引量:2
12
作者 白天 吕璐瑶 +1 位作者 李储 何加亮 《吉林大学学报(理学版)》 北大核心 2025年第1期91-98,共8页
针对传统游戏智能体算法存在模型输入维度大及训练时间长的问题,提出一种结合状态信息转换与奖励函数塑形技术的新型深度强化学习游戏智能引导算法.首先,利用Unity引擎提供的接口直接读取游戏后台信息,以有效压缩状态空间的维度,减少输... 针对传统游戏智能体算法存在模型输入维度大及训练时间长的问题,提出一种结合状态信息转换与奖励函数塑形技术的新型深度强化学习游戏智能引导算法.首先,利用Unity引擎提供的接口直接读取游戏后台信息,以有效压缩状态空间的维度,减少输入数据量;其次,通过精细化设计奖励机制,加速模型的收敛过程;最后,从主观定性和客观定量两方面对该算法模型与现有方法进行对比实验,实验结果表明,该算法不仅显著提高了模型的训练效率,还大幅度提高了智能体的性能. 展开更多
关键词 深度强化学习 游戏智能体 奖励函数塑形 近端策略优化算法
在线阅读 下载PDF
基于改进近端策略优化算法的柔性作业车间调度 被引量:2
13
作者 王艳红 付威通 +2 位作者 张俊 谭园园 田中大 《控制与决策》 北大核心 2025年第6期1883-1891,共9页
柔性作业车间调度是经典且复杂的组合优化问题,对于离散制造系统的生产优化具有重要的理论和实际意义.基于多指针图网络框架和近端策略优化算法设计一种求解柔性作业车间调度问题的深度强化学习算法.首先,将“工序-机器”分配调度过程... 柔性作业车间调度是经典且复杂的组合优化问题,对于离散制造系统的生产优化具有重要的理论和实际意义.基于多指针图网络框架和近端策略优化算法设计一种求解柔性作业车间调度问题的深度强化学习算法.首先,将“工序-机器”分配调度过程表征成由选择工序和分配机器两类动作构成的马尔可夫决策过程;其次,通过解耦策略解除动作之间的耦合关系,并设计新的损失函数和贪婪采样策略以提高算法的验证推理能力;在此基础上扩充状态空间,使评估网络能够更全面地感知与评估,从而进一步提升算法的学习和决策能力.在随机生成算例及基准算例上进行仿真和对比分析,验证算法的良好性能及泛化能力. 展开更多
关键词 柔性作业车间调度 近端策略优化算法 双动作耦合网络 损失函数优化 贪婪采样 深度强化学习
原文传递
基于动态势能奖励的双足机器人行走控制 被引量:2
14
作者 王泉德 王君豪 刘子航 《华中科技大学学报(自然科学版)》 北大核心 2025年第5期9-17,共9页
针对足式机器人学习过程中探索能力不足、样本利用率低及行走模式不稳定等问题,将动态势能融入基于势能的奖励塑造中,提出一种基于动态势能奖励塑造的奖励函数设计方法.该奖励函数在训练过程中通过动态调整机器人当前动作控制获得的奖励... 针对足式机器人学习过程中探索能力不足、样本利用率低及行走模式不稳定等问题,将动态势能融入基于势能的奖励塑造中,提出一种基于动态势能奖励塑造的奖励函数设计方法.该奖励函数在训练过程中通过动态调整机器人当前动作控制获得的奖励值,从而提高学习过程的探索能力.在搭建的足式机器人虚拟训练环境中,使用近端策略优化算法(PPO)结合基于动态势能奖励塑造的奖励计算实现了双足机器人定速行走控制.测试结果表明:所提出的方法能有效提高训练速度,机器人的运动姿态也更加自然与稳定. 展开更多
关键词 深度强化学习 双足机器人行走控制 奖励塑造 动态势能 近端策略优化算法
原文传递
时序记忆深度强化学习自抗扰微网稳压控制
15
作者 周雪松 李锦涛 +3 位作者 马幼捷 陶珑 刘文进 雷上诗 《电机与控制学报》 北大核心 2025年第10期138-147,158,共11页
针对直流微网内部功率不平衡引发的母线电压不确定性波动问题,提出一种考虑时序记忆的深度强化学习自抗扰控制策略(LSTM-PPO-LADRC)。首先,通过分析微网电压控制问题建立储能变换器的数学模型和符合马尔可夫决策过程的深度强化学习模型... 针对直流微网内部功率不平衡引发的母线电压不确定性波动问题,提出一种考虑时序记忆的深度强化学习自抗扰控制策略(LSTM-PPO-LADRC)。首先,通过分析微网电压控制问题建立储能变换器的数学模型和符合马尔可夫决策过程的深度强化学习模型;其次,基于长短期记忆循环神经网络(LSTM)分别设计近端策略优化(PPO)算法的动作网络与价值网络结构,详细梳理改进算法的数据驱动与执行过程,并对算法的收敛性进行理论分析;然后,根据所建立的深度强化学习动作空间模型设计适配LSTM-PPO-LADRC的线性扩张状态观测器(LESO),并将预训练好的智能体接入控制系统,实现LESO动态可调参数的自适应决策调整;最后,在仿真平台进行测试,得到多种工况下不同控制策略的动态响应曲线,验证LSTM-PPO-LADRC的可行性与优越性。 展开更多
关键词 直流微网 储能变换器 自抗扰控制 深度强化学习 近端策略优化算法 长短期记忆网络
在线阅读 下载PDF
基于近端策略优化的数据中心任务调度算法
16
作者 徐涛 常怡明 刘才华 《计算机工程与设计》 北大核心 2025年第3期712-718,共7页
针对调度算法无法动态适应数据中心状态动态变化和用户需求多样化的问题,提出一种基于近端策略优化的数据中心两阶段任务调度算法。通过设计优先级函数为任务提供优先级,采用近端策略优化方法适应数据中心状态动态变化和用户需求的多样... 针对调度算法无法动态适应数据中心状态动态变化和用户需求多样化的问题,提出一种基于近端策略优化的数据中心两阶段任务调度算法。通过设计优先级函数为任务提供优先级,采用近端策略优化方法适应数据中心状态动态变化和用户需求的多样化。在任务选择阶段通过计算任务的优先级,优先调度高优先级任务;在物理服务器选择阶段,智能体根据实时的数据中心状态和用户需求,灵活地调整任务调度决策,实现资源的高效分配。实验结果表明,该算法性能优于现有的启发式算法以及常用强化学习算法。 展开更多
关键词 调度算法 数据中心 任务调度 强化学习 近端策略优化 优先级 两阶段
在线阅读 下载PDF
基于强化学习的智能制导方法研究
17
作者 周桃品 宋丹阳 龚铮 《电子技术与软件工程》 2025年第2期12-18,共7页
传统的制导规律存在信息依赖度高、对目标机动样式适应能力不足等问题。针对空空导弹攻击机动目标作战使用场景,基于深度强化学习理论,构建适应于空中机动目标制导的智能学习场景,提出基于深度强化学习的系数时变最优制导律,并采用改进... 传统的制导规律存在信息依赖度高、对目标机动样式适应能力不足等问题。针对空空导弹攻击机动目标作战使用场景,基于深度强化学习理论,构建适应于空中机动目标制导的智能学习场景,提出基于深度强化学习的系数时变最优制导律,并采用改进的PPO算法,完成了制导参数实时调节神经网络的训练及部署,最后通过数学仿真验证了优化策略的正确性。 展开更多
关键词 智能制导 深度强化学习 最优制导律 神经网络 近端策略优化
在线阅读 下载PDF
基于改进近端策略优化算法的AGV路径规划与任务调度 被引量:4
18
作者 祁璇 周通 +2 位作者 王村松 彭孝天 彭浩 《计算机集成制造系统》 北大核心 2025年第3期955-964,共10页
自动引导车(AGV)是一种具有高度柔性和灵活性的自动化物料运输设备,可实现路径规划、任务调度和智能分配等功能。目前关于AGV最优路径与调度算法研究仍存在泛化性差、收敛效率低、寻路时间长等问题。因此,提出一种改进近端策略优化算法(... 自动引导车(AGV)是一种具有高度柔性和灵活性的自动化物料运输设备,可实现路径规划、任务调度和智能分配等功能。目前关于AGV最优路径与调度算法研究仍存在泛化性差、收敛效率低、寻路时间长等问题。因此,提出一种改进近端策略优化算法(PPO)。首先,采用多步长动作选择策略增加AGV移动步长,将AGV动作集由原来的4个方向基础上增加了8个方向,优化最优路径;其次,改进动态奖励值函数,根据AGV当前状态实时调整奖励值大小,提高其学习能力;然后,基于不同改进方法比较其奖励值曲线图,验证算法收敛效率与最优路径距离;最后,采用多任务调度优化算法,设计了一种单AGV多任务调度优化算法,提高运输效率。结果表明:改进后的算法最优路径缩短了28.6%,改进后的算法相比于PPO算法收敛效率提升了78.5%,在处理更为复杂、需要高水平策略的任务时表现更佳,具有更强的泛化能力;将改进后的算法与Q学习、深度Q学习(DQN)算法、软演员-评论家(SAC)算法进行比较,算法效率分别提升了84.4%、83.7%、77.9%;单AGV多任务调度优化后,平均路径缩短了47.6%。 展开更多
关键词 自动导引小车 路径规划 任务调度 近端策略优化算法 强化学习
在线阅读 下载PDF
基于深度强化学习的离散状态转移算法求解柔性作业车间调度问题 被引量:1
19
作者 朱家政 王聪 +2 位作者 李新凯 董颖超 张宏立 《北京航空航天大学学报》 北大核心 2025年第4期1385-1394,共10页
柔性作业车间调度问题(FJSP)作为一种在实际生活中应用广泛的调度问题,对其智能算法具有重要价值。为了解决FJSP,以最小化最大完工时间为优化目标,提出了一种基于近端策略优化的离散状态转移算法(DSTA-PPO)。DSTA-PPO具有3个特点:考虑到... 柔性作业车间调度问题(FJSP)作为一种在实际生活中应用广泛的调度问题,对其智能算法具有重要价值。为了解决FJSP,以最小化最大完工时间为优化目标,提出了一种基于近端策略优化的离散状态转移算法(DSTA-PPO)。DSTA-PPO具有3个特点:考虑到FJSP需要同时对工序排序、机器分配同时进行调度安排,结合工序编码和机器编码,设计了一种能够充分表达当前调度问题的状态特征;针对工序排序、机器分配设计了多种基于关键路径的搜索操作;通过强化学习的训练,能够有效地引导智能体选择正确的搜索操作优化当前的调度序列。通过基于不同数据集的仿真实验,验证了算法各环节的有效性,同时在相同算例上以最小化最大完工时间为对比指标与现有算法进行了比较,对比结果表明了所提算法能够在多数算例上以更短的完工时间对算例完成求解,有效地求解了柔性作业车间调度问题。 展开更多
关键词 深度学习 强化学习 离散状态转移算法 近端策略优化算法 柔性作业车间调度
原文传递
基于近端策略优化算法的含电动汽车孤岛微电网智能频率控制策略 被引量:2
20
作者 卢昱宏 范培潇 +1 位作者 杨军 李蕊 《电力自动化设备》 北大核心 2025年第10期135-143,共9页
随着电动汽车数量的快速增长,其作为有限挂网储能设备参与电网调控的潜力备受关注,但用户行为的随机性与时空移动性给车网互动带来了挑战。为此,提出一种基于近端策略优化算法的含电动汽车孤岛微电网智能频率控制策略。构建包含广义聚... 随着电动汽车数量的快速增长,其作为有限挂网储能设备参与电网调控的潜力备受关注,但用户行为的随机性与时空移动性给车网互动带来了挑战。为此,提出一种基于近端策略优化算法的含电动汽车孤岛微电网智能频率控制策略。构建包含广义聚合电动汽车充电站的微电网负荷频率控制框架;基于闵可夫斯基求和方式,提出两阶段电动汽车充电站的可调控裕度计算方法;通过重要性采样比率剪切、多步经验回放、小批量优化等方式提升算法训练效率,并通过设计状态与动作空间、奖励函数以及选取合适超参数完成频率控制器的构建。仿真结果表明,所设计的控制器在训练时间和控制效果方面显著优于传统频率控制方法,为微电网的稳定运行提供了有力的技术支持。 展开更多
关键词 电动汽车 孤岛微电网 频率控制 近端策略优化算法 闵可夫斯基求和
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部