The density of liquid binary Ni-Mo alloys with molybdenum concentration from 0 to 20% (mass fraction) wasmeasured by a modified sessile drop method. It has been found that the density of the liquid Ni-Mo alloys decrea...The density of liquid binary Ni-Mo alloys with molybdenum concentration from 0 to 20% (mass fraction) wasmeasured by a modified sessile drop method. It has been found that the density of the liquid Ni-Mo alloys decreaseswith increasing temperature, but increases with the increase of molybdenum concentration in the alloys. The molarvolume of liquid Ni-Mo binary alloys increases with the increase of temperature and molybdenum concentration. Thepartial molar volume of molybdenum in Ni-Mo binary alloy has been approximately calculated as [13.18-2.65×10^(-3)T+(-47.94+3.10×10^(-2)T)×10^(-2)X_(Mo)]×10^(-6)m^3·mol^(-1). The molar volume of Ni-Mo alloy determined inthe present work shows a negative deviation from the ideal linear mixing molar volume.展开更多
The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increa...The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increase of tantalum concentration in the alloys. The molar volume of liquid Ni-Ta binary alloys increases with the increase of temperature and tantalum concentration.展开更多
The surface tension of molten tin was determined by a set of self-developed digital equipment with sessile drop method at oxygen partial pressure of 1.0×10 -6MPa under different temperatures, and the dependence...The surface tension of molten tin was determined by a set of self-developed digital equipment with sessile drop method at oxygen partial pressure of 1.0×10 -6MPa under different temperatures, and the dependence of surface tension of molten tin on temperature was also discussed. The emphasis was placed on the comparison of surface tension of the same molten tin sample measured by using different equipments with sessile drop method. Results of the comparison indicate that the measurement results with sessile drop method under the approximate experimental conditions are coincident, and the self-developed digital equipment for surface tension measurement has higher stability and accuracy. The relationships of surface tension of molten tin and its temperature coefficient with temperature and oxygen partial pressure were also elucidated from the thermodynamic equilibrium analysis.展开更多
The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni):x(Co):x(Al)≈73:12.15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM...The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni):x(Co):x(Al)≈73:12.15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.展开更多
A spherical Si solar cell with a reflector cup was successfully fabricated by a dropping method at decompression state. In the dropping method, melted Si droplets were instilled at decompression state (0.5×105 Pa...A spherical Si solar cell with a reflector cup was successfully fabricated by a dropping method at decompression state. In the dropping method, melted Si droplets were instilled at decompression state (0.5×105 Pa) to reduce crystal growth rate, dominating crystal quality such as dislocation density in crystal grains. Spherical Si solar cells were fabricated using the spherical Si crystals with a diameter of 1 mm and then mounted on a reflector cup. The current-voltage measurement of the solar cell shows an energy conversion efficiency of 11.1% (short-circuit current density (Jsc): 24.7 mA·cm-2, open-circuit voltage: 601 mV, fill factor: 74.6%). Minority carrier diffusion length determined by surface photovoltage method was 98 μm. This value can be enhanced by the improvement of crystal quality of spherical Si crystals. These results demonstrate that spherical Si crystals fabricated by the dropping method has a great potential for substrate material of high-efficiency and low-cost solar cells.展开更多
To measure contact angle between CO2 and solid surface, in this study a visual high-pressure vessel has been developed, with a corresponding well-controlled constant temperature system. Pendant drop method is applied ...To measure contact angle between CO2 and solid surface, in this study a visual high-pressure vessel has been developed, with a corresponding well-controlled constant temperature system. Pendant drop method is applied to the investigation of the contact angles of CO2 on a stainless steel surface in its own vapor. The image of the pendant drop is recorded by a camera, and a B-Snake method is used to analyze the contour and the contact angle of the droplet. The experimental results have provided a set of well tested data, which show that CO2 has good infiltration into stainless steel surface and the de- veloped method can be used as a standard testing one for measuring the contact angle between high-pressure liquid and solid surface.展开更多
Preparation of DPPC lipid monolayer in water trough has been done by dropping method and compared with compression method. Monolayer was studied by surface pressure isotherm, fluorescence microscopy, Brewster angle mi...Preparation of DPPC lipid monolayer in water trough has been done by dropping method and compared with compression method. Monolayer was studied by surface pressure isotherm, fluorescence microscopy, Brewster angle microscopy, and infrared external reflection spectroscopy. Results of these measurements showed that dropping method gave better results compared to compression method. In dropping method, transition from liquid expanded state to liquid condensed is gradual compared to sharp one in compressed method. During monolayer formation, adjustment and interaction between hydrophilic part of lipid and water and among hydrophobic part of lipid molecule are slow, stable, and more natural as worked out from surface area versus pressure isotherm. At a given molecular area, surface pressure is less compared to compression method thus monolayer is in more fluidic state in dropping method than compression method. The observation was supported by all techniques described above.展开更多
Morphology of dipalmitoyl phosphatidyl choline (DPPC)-cholesterol (Chol) mixed monolayer formed on water surface by dropping method was investigated using surface tension measurement (STm), Brewster angle microscopy (...Morphology of dipalmitoyl phosphatidyl choline (DPPC)-cholesterol (Chol) mixed monolayer formed on water surface by dropping method was investigated using surface tension measurement (STm), Brewster angle microscopy (BAM), and fluorescence microscopy (FM). STm showed strong condensation effect of Chol in fluidic DPPC monolayer. Excess area (S<sub>ex</sub>) from mean mixing state of DPPC and Chol was about twice larger than that by general compression method in the range from xC = 0.2 to 0.4 (xC: mole fraction of Chol). BAM and FM images showed clearly that the fluidic DPPC monolayer changed to condensed rigid monolayer due to the condensation effect of Chol. At more than xC = 0.3 DPPC-Chol mixed monolayer changed to condensed state similar to the Chol monolayer. These results support previous reports by compression method that Chol molecule demonstrates the strong condensation effect to the fluidic monolayer and also indicate that dropping method enables to form unique monolayer on the water surface.展开更多
[Objectives] This study was conducted to establish a method for microbial limit test of Compound Yu E Nose Drops.[Methods] According to the Chinese Pharmacopoei (General Rules in the fourth part of the 2015 edition),t...[Objectives] This study was conducted to establish a method for microbial limit test of Compound Yu E Nose Drops.[Methods] According to the Chinese Pharmacopoei (General Rules in the fourth part of the 2015 edition),the microbial limit test method for Compound Yu E Nose Drops was verified.[Results] Compound Yu E Nose Drops has a strong inhibitory effect on Staphylococcus aureus and Bacillus subtilis,and the inhibitory activity was significantly eliminated after increasing the diluent (1∶ 20).The recoveries were all in the range of 0.5-2.0 when the total quantities of aerobic microbes were determined by the dilution method (1∶ 20).When the total quantities of mould and yeast were determined by the conventional method,the recoveries were both in the range of 0.5-2.0.When examining control bacteria,Escherichia coli,S.aureus and Pseudomonas aeruginosa can all be detected in the test groups by the test liquid dilution method.[Conclusions] For Compound Yu E Nose Drops,the total quantities of aerobic microbe can be counted by the dilution method;the quantities of mould and yeast can be examined by the conventional plate method;and the conventional method can be used for control microbe examination.展开更多
Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours....Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours. The structural, optical, and electrical properties of the SnO<sub>2</sub> thin films were investigated by using XRD, FTIR, SEM, EDX, UV-Vis spectroscopy, and Electrometer experiment. The XRD patterns of SnO<sub>2</sub> thin films deposited on glass substrate by CBD method, Drop-Cast method and Dip-Coating method showed cubic, tetragonal and amorphous structures respectively. The FTIR spectrum exhibited the strong presence of SnO<sub>2</sub> with the characteristic vibrational mode of Sn-O-Sn. The SEM analysis was observed that the surface morphology of the thin films toughly depends on the deposition methods of the SnO<sub>2</sub> thin films. EDX measurement confirmed that the thin films are the composition of Tin (Sn) and Oxygen (O<sub>2</sub>). The optical band gap of SnO<sub>2 </sub>thin films deposited by CBD method, Drop-Cast method and Dip-Coating method is found to be 3.12 eV, 3.14 eV and 3.16 eV respectively. Thin films deposited by Dip-Coating method showed the highest band gap. The electrical results confirmed that the SnO<sub>2</sub> thin films are good conductors and pursued Ohm’s Law. These properties of the SnO<sub>2</sub> thin films brand are appropriate for application in solar cell assembly, gas sensor devices and transparent electrodes of panel displays.展开更多
The sessile drop method combined with a capillary purification procedure was used,for thefirst time,to analyze the high-temperature behavior of molten Mg on three dissimilar substrates:1)molybdenum,2)tantalum and 3)AISI...The sessile drop method combined with a capillary purification procedure was used,for thefirst time,to analyze the high-temperature behavior of molten Mg on three dissimilar substrates:1)molybdenum,2)tantalum and 3)AISI 316L stainless steel.All tests were performed under isothermal conditions at 720℃ in a protective atmosphere(Ar+5 wt.%H2).Images of Mg/substrate couples recorded during the experiments were used to calculate the contact angles(θ)formed between the liquid Mg drop and the selected substrates.After the sessile drop tests,the Mg/Mo,Mg/Ta,and Mg/AISI 316L couples were subjected to in-depth microstructural characterization using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS).Under the employed experimental conditions,oxide-free Mg drops on all tested couples presented non-wetting behavior(θ>90°).The average values of the calculated contact angles after 40 s of liquid Mg deposition wereθMg/Mo=124°,θMg/Ta=125°,andθMg/AISI 316L=126°,respectively.The SEM/EDS analysis showed no mass transfer and no bonding between solidified drops and the substrates.This non-reactive and non-wetting behavior of investigated couples can be associated with the immiscible nature of the Mg-Mo,Mg-Ta,and Mg-Fe systems,where the solubility of liquid Mg with all tested materials is negligible,and Mg does not form any compounds with them.展开更多
合成润滑油广泛应用于各类制冷与热泵设备,其热物理性质是分析热力学能效、换热性能和沿程压降的基础数据,对评价和优化系统结构具有重要意义。本文研制了一套低温、高压悬滴法表面张力实验测量系统,并使用振动管密度计与悬滴法表面张...合成润滑油广泛应用于各类制冷与热泵设备,其热物理性质是分析热力学能效、换热性能和沿程压降的基础数据,对评价和优化系统结构具有重要意义。本文研制了一套低温、高压悬滴法表面张力实验测量系统,并使用振动管密度计与悬滴法表面张力实验系统开展了基础润滑油(POE、PVE和PAG)的液相密度和表面张力实验研究,测量的温度范围为243.15~363.15 K,液相密度和表面张力测量的扩展不确定度分别在0.2%和0.1 m N·m^(-1)以内。实验结果表明:基础润滑油的液相密度和表面张力均随温度的增大而减小,关联方程的计算值与实验值的绝对平均偏差分别小于0.04%和0.5%。展开更多
文摘The density of liquid binary Ni-Mo alloys with molybdenum concentration from 0 to 20% (mass fraction) wasmeasured by a modified sessile drop method. It has been found that the density of the liquid Ni-Mo alloys decreaseswith increasing temperature, but increases with the increase of molybdenum concentration in the alloys. The molarvolume of liquid Ni-Mo binary alloys increases with the increase of temperature and molybdenum concentration. Thepartial molar volume of molybdenum in Ni-Mo binary alloy has been approximately calculated as [13.18-2.65×10^(-3)T+(-47.94+3.10×10^(-2)T)×10^(-2)X_(Mo)]×10^(-6)m^3·mol^(-1). The molar volume of Ni-Mo alloy determined inthe present work shows a negative deviation from the ideal linear mixing molar volume.
文摘The density of liquid Ni-Ta alloys was measured by using a modified sessile drop method. It is found that the density of the liquid Ni-Ta alloys decreases with the increasing temperature, but increases with the increase of tantalum concentration in the alloys. The molar volume of liquid Ni-Ta binary alloys increases with the increase of temperature and tantalum concentration.
文摘The surface tension of molten tin was determined by a set of self-developed digital equipment with sessile drop method at oxygen partial pressure of 1.0×10 -6MPa under different temperatures, and the dependence of surface tension of molten tin on temperature was also discussed. The emphasis was placed on the comparison of surface tension of the same molten tin sample measured by using different equipments with sessile drop method. Results of the comparison indicate that the measurement results with sessile drop method under the approximate experimental conditions are coincident, and the self-developed digital equipment for surface tension measurement has higher stability and accuracy. The relationships of surface tension of molten tin and its temperature coefficient with temperature and oxygen partial pressure were also elucidated from the thermodynamic equilibrium analysis.
基金Project(NCET-05-0764) supported by the Program for New Century Excellent Talent in Universityproject(2004527) supported by SRF for ROCS, SEM
文摘The densities of liquid NiCoAlCr quaternary alloys with a fixed molar ratio of Ni to Co to Al (x(Ni):x(Co):x(Al)≈73:12.15) which is close to the average value of the commercial Ni-based superalloys TMS75, INCO713, CM247LC and CMSX-4, and the mass fraction of chromium changes from 0 to 9% were measured by a modified sessile drop method. It is found that with increasing temperature and chromium concentration in the alloys, the densities of the liquid NiCoAlCr quaternary alloys decrease, whereas the molar volume of the liquid NiCoAlCr quaternary alloys increases. And the liquid densities of NiCoAlCr quaternary alloys calculated from the partial molar volumes of nickel, cobalt, aluminum and chromium in the corresponding Ni-bases binary alloys are in good agreement with the experimental ones, i.e. within the error tolerance range the densities of the liquid Ni-based multi-component alloys can be predicted from the partial volumes of elements in Ni-based binary alloys in liquid state. The molar volume of liquid NiCoAlCr binary alloy shows a negative deviation from the ideal linear mixing and the deviation changes small with the increase of chromium concentration at the same temperature.
基金This work was partly financially supported by NEDO.
文摘A spherical Si solar cell with a reflector cup was successfully fabricated by a dropping method at decompression state. In the dropping method, melted Si droplets were instilled at decompression state (0.5×105 Pa) to reduce crystal growth rate, dominating crystal quality such as dislocation density in crystal grains. Spherical Si solar cells were fabricated using the spherical Si crystals with a diameter of 1 mm and then mounted on a reflector cup. The current-voltage measurement of the solar cell shows an energy conversion efficiency of 11.1% (short-circuit current density (Jsc): 24.7 mA·cm-2, open-circuit voltage: 601 mV, fill factor: 74.6%). Minority carrier diffusion length determined by surface photovoltage method was 98 μm. This value can be enhanced by the improvement of crystal quality of spherical Si crystals. These results demonstrate that spherical Si crystals fabricated by the dropping method has a great potential for substrate material of high-efficiency and low-cost solar cells.
基金the Focus of International Science and Technology Cooperation Project of the Ministry of Science and Technology (Grant No. 2003DF000050)――The development of the track detector thermal control system for the International Space Station Alpha Magnetic Spectrometer (AMS)a special preliminary study item of the 973 Program (Grant No. 2006CB708613) the Natural Science Foundation of Guangdong Province (Grant No. 05003274)
文摘To measure contact angle between CO2 and solid surface, in this study a visual high-pressure vessel has been developed, with a corresponding well-controlled constant temperature system. Pendant drop method is applied to the investigation of the contact angles of CO2 on a stainless steel surface in its own vapor. The image of the pendant drop is recorded by a camera, and a B-Snake method is used to analyze the contour and the contact angle of the droplet. The experimental results have provided a set of well tested data, which show that CO2 has good infiltration into stainless steel surface and the de- veloped method can be used as a standard testing one for measuring the contact angle between high-pressure liquid and solid surface.
文摘Preparation of DPPC lipid monolayer in water trough has been done by dropping method and compared with compression method. Monolayer was studied by surface pressure isotherm, fluorescence microscopy, Brewster angle microscopy, and infrared external reflection spectroscopy. Results of these measurements showed that dropping method gave better results compared to compression method. In dropping method, transition from liquid expanded state to liquid condensed is gradual compared to sharp one in compressed method. During monolayer formation, adjustment and interaction between hydrophilic part of lipid and water and among hydrophobic part of lipid molecule are slow, stable, and more natural as worked out from surface area versus pressure isotherm. At a given molecular area, surface pressure is less compared to compression method thus monolayer is in more fluidic state in dropping method than compression method. The observation was supported by all techniques described above.
文摘Morphology of dipalmitoyl phosphatidyl choline (DPPC)-cholesterol (Chol) mixed monolayer formed on water surface by dropping method was investigated using surface tension measurement (STm), Brewster angle microscopy (BAM), and fluorescence microscopy (FM). STm showed strong condensation effect of Chol in fluidic DPPC monolayer. Excess area (S<sub>ex</sub>) from mean mixing state of DPPC and Chol was about twice larger than that by general compression method in the range from xC = 0.2 to 0.4 (xC: mole fraction of Chol). BAM and FM images showed clearly that the fluidic DPPC monolayer changed to condensed rigid monolayer due to the condensation effect of Chol. At more than xC = 0.3 DPPC-Chol mixed monolayer changed to condensed state similar to the Chol monolayer. These results support previous reports by compression method that Chol molecule demonstrates the strong condensation effect to the fluidic monolayer and also indicate that dropping method enables to form unique monolayer on the water surface.
基金Supported by Traditional Chinese Medicine Modern Technology Industry Research and Development Special Project of Guizhou Province(QKHZYZ[2013]5018)First-class Construction Discipline Project of Guizhou Province(GNYL[2017]008)+1 种基金Traditional Chinese Medicine Characteristic Technology Inheriting Talent Project of State Administration of Traditional Chinese Medicine(GZYYRJH[2019]43)Traditional Chinese Medicine and Ethnic Minority Medicine Technique Research Subject of Guizhou Administrative Bureau of TCM(QZYY2013-75)
文摘[Objectives] This study was conducted to establish a method for microbial limit test of Compound Yu E Nose Drops.[Methods] According to the Chinese Pharmacopoei (General Rules in the fourth part of the 2015 edition),the microbial limit test method for Compound Yu E Nose Drops was verified.[Results] Compound Yu E Nose Drops has a strong inhibitory effect on Staphylococcus aureus and Bacillus subtilis,and the inhibitory activity was significantly eliminated after increasing the diluent (1∶ 20).The recoveries were all in the range of 0.5-2.0 when the total quantities of aerobic microbes were determined by the dilution method (1∶ 20).When the total quantities of mould and yeast were determined by the conventional method,the recoveries were both in the range of 0.5-2.0.When examining control bacteria,Escherichia coli,S.aureus and Pseudomonas aeruginosa can all be detected in the test groups by the test liquid dilution method.[Conclusions] For Compound Yu E Nose Drops,the total quantities of aerobic microbe can be counted by the dilution method;the quantities of mould and yeast can be examined by the conventional plate method;and the conventional method can be used for control microbe examination.
文摘Tin oxide (SnO<sub>2</sub>) thin films were deposited on glass substrate by Chemical Bath Deposition (CBD), Drop-Cast and Dip-Coating method. The thin films were post-annealed at 500°C for 2 hours. The structural, optical, and electrical properties of the SnO<sub>2</sub> thin films were investigated by using XRD, FTIR, SEM, EDX, UV-Vis spectroscopy, and Electrometer experiment. The XRD patterns of SnO<sub>2</sub> thin films deposited on glass substrate by CBD method, Drop-Cast method and Dip-Coating method showed cubic, tetragonal and amorphous structures respectively. The FTIR spectrum exhibited the strong presence of SnO<sub>2</sub> with the characteristic vibrational mode of Sn-O-Sn. The SEM analysis was observed that the surface morphology of the thin films toughly depends on the deposition methods of the SnO<sub>2</sub> thin films. EDX measurement confirmed that the thin films are the composition of Tin (Sn) and Oxygen (O<sub>2</sub>). The optical band gap of SnO<sub>2 </sub>thin films deposited by CBD method, Drop-Cast method and Dip-Coating method is found to be 3.12 eV, 3.14 eV and 3.16 eV respectively. Thin films deposited by Dip-Coating method showed the highest band gap. The electrical results confirmed that the SnO<sub>2</sub> thin films are good conductors and pursued Ohm’s Law. These properties of the SnO<sub>2</sub> thin films brand are appropriate for application in solar cell assembly, gas sensor devices and transparent electrodes of panel displays.
文摘The sessile drop method combined with a capillary purification procedure was used,for thefirst time,to analyze the high-temperature behavior of molten Mg on three dissimilar substrates:1)molybdenum,2)tantalum and 3)AISI 316L stainless steel.All tests were performed under isothermal conditions at 720℃ in a protective atmosphere(Ar+5 wt.%H2).Images of Mg/substrate couples recorded during the experiments were used to calculate the contact angles(θ)formed between the liquid Mg drop and the selected substrates.After the sessile drop tests,the Mg/Mo,Mg/Ta,and Mg/AISI 316L couples were subjected to in-depth microstructural characterization using scanning electron microscopy(SEM)and energy-dispersive X-ray spectroscopy(EDS).Under the employed experimental conditions,oxide-free Mg drops on all tested couples presented non-wetting behavior(θ>90°).The average values of the calculated contact angles after 40 s of liquid Mg deposition wereθMg/Mo=124°,θMg/Ta=125°,andθMg/AISI 316L=126°,respectively.The SEM/EDS analysis showed no mass transfer and no bonding between solidified drops and the substrates.This non-reactive and non-wetting behavior of investigated couples can be associated with the immiscible nature of the Mg-Mo,Mg-Ta,and Mg-Fe systems,where the solubility of liquid Mg with all tested materials is negligible,and Mg does not form any compounds with them.
文摘合成润滑油广泛应用于各类制冷与热泵设备,其热物理性质是分析热力学能效、换热性能和沿程压降的基础数据,对评价和优化系统结构具有重要意义。本文研制了一套低温、高压悬滴法表面张力实验测量系统,并使用振动管密度计与悬滴法表面张力实验系统开展了基础润滑油(POE、PVE和PAG)的液相密度和表面张力实验研究,测量的温度范围为243.15~363.15 K,液相密度和表面张力测量的扩展不确定度分别在0.2%和0.1 m N·m^(-1)以内。实验结果表明:基础润滑油的液相密度和表面张力均随温度的增大而减小,关联方程的计算值与实验值的绝对平均偏差分别小于0.04%和0.5%。