Vehicular node positioning needs to be quick and precise on highway for safety considera-tion.In this paper,we present a novel and practical vehicular node positioning method which can achieve a higher accuracy and mo...Vehicular node positioning needs to be quick and precise on highway for safety considera-tion.In this paper,we present a novel and practical vehicular node positioning method which can achieve a higher accuracy and more reliability than the existing global-positioning-system-based po-sitioning solutions by making use of Doppler-shifted frequency measurements taken by vehicular node itself.This positioning method uses infrastructure nodes which are placed on the roadside every several kilometers as radiation sources to estimate the relative distances of vehicle to the infrastructure node.Through coordinate conversion,we get the absolute coordinates of vehicular node based on known absolute coordinates of infrastructure node.We also analyze the optimal distance of neighbor infra-structure nodes in order to ensure a high accuracy.In addition,simulation results demonstrate that the accuracy of our method with Extended Kalman Filtering(EKF) is superior to the method without EKF.展开更多
基金Supported by the National Grand Fundamental Research Program of China (973 Program, No.2007CB310606)The National High Technology Research and Development Program of China (863 Program, No.2008AA01Z205)China Postdoctoral Science Foundation funded project
文摘Vehicular node positioning needs to be quick and precise on highway for safety considera-tion.In this paper,we present a novel and practical vehicular node positioning method which can achieve a higher accuracy and more reliability than the existing global-positioning-system-based po-sitioning solutions by making use of Doppler-shifted frequency measurements taken by vehicular node itself.This positioning method uses infrastructure nodes which are placed on the roadside every several kilometers as radiation sources to estimate the relative distances of vehicle to the infrastructure node.Through coordinate conversion,we get the absolute coordinates of vehicular node based on known absolute coordinates of infrastructure node.We also analyze the optimal distance of neighbor infra-structure nodes in order to ensure a high accuracy.In addition,simulation results demonstrate that the accuracy of our method with Extended Kalman Filtering(EKF) is superior to the method without EKF.
文摘5G超密集网络(ultra-dense network,UDN)的引入是为了提升吞吐量,特别是针对静态和低速场景,因此,无法同时满足高吞吐量和高移动速度的需求。对于未来需要同时支持高容量和高速移动的6G新场景,提出一种同心圆模型(homocentric sphere model,HSM)的网络架构,采用控制面/用户面数据分离、多发送接收节点(transmission and reception point, TRP)协同传输的方法来处理密集部署网络中多普勒效应影响大和TRP频繁切换的问题,使得该模型成为密集部署网络下提升网络容量、应对高速移动的有效方法。数据结果证明,所提的HSM有效减小了密集组网高速移动场景下多普勒频移效应,同时能够提供更高的网络遍历频谱效率。