期刊文献+
共找到1,080篇文章
< 1 2 54 >
每页显示 20 50 100
SDN-Enabled IoT Based Transport Layer DDoS Attacks Detection Using RNNs
1
作者 Mohammad Nowsin Amin Sheikh Muhammad Saibtain Raza +4 位作者 I-Shyan Hwang Md.Alamgir Hossain Ihsan Ullah Tahmid Hasan Mohammad Syuhaimi Ab-Rahman 《Computers, Materials & Continua》 2025年第11期4043-4066,共24页
The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists fac... The rapid advancement of the Internet ofThings(IoT)has heightened the importance of security,with a notable increase in Distributed Denial-of-Service(DDoS)attacks targeting IoT devices.Network security specialists face the challenge of producing systems to identify and offset these attacks.This researchmanages IoT security through the emerging Software-Defined Networking(SDN)standard by developing a unified framework(RNN-RYU).We thoroughly assess multiple deep learning frameworks,including Convolutional Neural Network(CNN),Long Short-Term Memory(LSTM),Feed-Forward Convolutional Neural Network(FFCNN),and Recurrent Neural Network(RNN),and present the novel usage of Synthetic Minority Over-Sampling Technique(SMOTE)tailored for IoT-SDN contexts to manage class imbalance during training and enhance performance metrics.Our research has significant practical implications as we authenticate the approache using both the self-generated SD_IoT_Smart_City dataset and the publicly available CICIoT23 dataset.The system utilizes only eleven features to identify DDoS attacks efficiently.Results indicate that the RNN can reliably and precisely differentiate between DDoS traffic and benign traffic by easily identifying temporal relationships and sequences in the data. 展开更多
关键词 ddos attack detection IoT-SDN SD_IoT_Smart_City RNNs
在线阅读 下载PDF
Adapting Convolutional Autoencoder for DDoS Attack Detection via Joint Reconstruction Learning and Refined Anomaly Scoring
2
作者 Seulki Han Sangho Son +1 位作者 Won Sakong Haemin Jung 《Computers, Materials & Continua》 2025年第11期2893-2912,共20页
As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic... As cyber threats become increasingly sophisticated,Distributed Denial-of-Service(DDoS)attacks continue to pose a serious threat to network infrastructure,often disrupting critical services through overwhelming traffic.Although unsupervised anomaly detection using convolutional autoencoders(CAEs)has gained attention for its ability to model normal network behavior without requiring labeled data,conventional CAEs struggle to effectively distinguish between normal and attack traffic due to over-generalized reconstructions and naive anomaly scoring.To address these limitations,we propose CA-CAE,a novel anomaly detection framework designed to improve DDoS detection through asymmetric joint reconstruction learning and refined anomaly scoring.Our architecture connects two CAEs sequentially with asymmetric filter allocation,which amplifies reconstruction errors for anomalous data while preserving low errors for normal traffic.Additionally,we introduce a scoring mechanism that incorporates exponential decay weighting to emphasize recent anomalies and relative traffic volume adjustment to highlight highrisk instances,enabling more accurate and timely detection.We evaluate CA-CAE on a real-world network traffic dataset collected using Cisco NetFlow,containing over 190,000 normal instances and only 78 anomalous instances—an extremely imbalanced scenario(0.0004% anomalies).We validate the proposed framework through extensive experiments,including statistical tests and comparisons with baseline models.Despite this challenge,our method achieves significant improvement,increasing the F1-score from 0.515 obtained by the baseline CAE to 0.934,and outperforming other models.These results demonstrate the effectiveness,scalability,and practicality of CA-CAE for unsupervised DDoS detection in realistic network environments.By combining lightweight model architecture with a domain-aware scoring strategy,our framework provides a robust solution for early detection of DDoS attacks without relying on labeled attack data. 展开更多
关键词 Anomaly detection ddos attack detection convolutional autoencoder
在线阅读 下载PDF
基于混合特征选择的低延时DDoS攻击检测
3
作者 谢丽霞 王嘉敏 +2 位作者 杨宏宇 胡泽 成翔 《计算机应用》 北大核心 2025年第10期3231-3240,共10页
许多分布式拒绝服务(DDoS)攻击检测方法侧重提升模型性能,但忽略流量样本分布和特征维度对检测性能的影响,导致模型学习多余信息。针对网络流量类不平衡和特征冗余问题,提出一种基于多评价标准的混合特征选择方法(HFS-MEC)。首先,综合... 许多分布式拒绝服务(DDoS)攻击检测方法侧重提升模型性能,但忽略流量样本分布和特征维度对检测性能的影响,导致模型学习多余信息。针对网络流量类不平衡和特征冗余问题,提出一种基于多评价标准的混合特征选择方法(HFS-MEC)。首先,综合考虑皮尔逊相关系数(PCC)和互信息(MI),选出相关性特征;其次,设计基于方差膨胀因子(VIF)的序列后向选择(SBS)算法,减少特征冗余,进一步降低特征维度;同时,为了平衡检测性能和计算时间,设计基于简单循环单元(SRU)的低延时DDoS攻击检测(L-DDoS-SRU)模型。在CICIDS2017和CICDDoS2019数据集上的实验结果表明,HFS-MEC将特征维度从78和88分别减少至31和41。在CICDDoS2019数据集上,L-DDoS-SRU检测时间仅40.34 s;召回率达99.38%,与长短期记忆(LSTM)相比提高了8.47%,与门控循环单元(GRU)相比提高了9.76%。以上验证了所提方法能有效提高检测性能并减少检测时间。 展开更多
关键词 类不平衡 特征冗余 混合特征选择 低延时 分布式拒绝服务攻击检测 简单循环单元
在线阅读 下载PDF
An Abnormal Network Flow Feature Sequence Prediction Approach for DDoS Attacks Detection in Big Data Environment 被引量:20
4
作者 Jieren Cheng Ruomeng Xu +2 位作者 Xiangyan Tang Victor S.Sheng Canting Cai 《Computers, Materials & Continua》 SCIE EI 2018年第4期95-119,共25页
Distributed denial-of-service(DDoS)is a rapidly growing problem with the fast development of the Internet.There are multitude DDoS detection approaches,however,three major problems about DDoS attack detection appear i... Distributed denial-of-service(DDoS)is a rapidly growing problem with the fast development of the Internet.There are multitude DDoS detection approaches,however,three major problems about DDoS attack detection appear in the big data environment.Firstly,to shorten the respond time of the DDoS attack detector;secondly,to reduce the required compute resources;lastly,to achieve a high detection rate with low false alarm rate.In the paper,we propose an abnormal network flow feature sequence prediction approach which could fit to be used as a DDoS attack detector in the big data environment and solve aforementioned problems.We define a network flow abnormal index as PDRA with the percentage of old IP addresses,the increment of the new IP addresses,the ratio of new IP addresses to the old IP addresses and average accessing rate of each new IP address.We design an IP address database using sequential storage model which has a constant time complexity.The autoregressive integrated moving average(ARIMA)trending prediction module will be started if and only if the number of continuous PDRA sequence value,which all exceed an PDRA abnormal threshold(PAT),reaches a certain preset threshold.And then calculate the probability that is the percentage of forecasting PDRA sequence value which exceed the PAT.Finally we identify the DDoS attack based on the abnormal probability of the forecasting PDRA sequence.Both theorem and experiment show that the method we proposed can effectively reduce the compute resources consumption,identify DDoS attack at its initial stage with higher detection rate and lower false alarm rate. 展开更多
关键词 ddos attack time series prediction ARIMA big data
在线阅读 下载PDF
Automated Controller Placement for Software-Defined Networks to Resist DDoS Attacks 被引量:4
5
作者 Muhammad Reazul Haque Saw Chin Tan +8 位作者 Zulfadzli Yusoff Kashif Nisar Lee Ching Kwang Rizaludin Kaspin Bhawani Shankar Chowdhry Rajkumar Buyya Satya Prasad Majumder Manoj Gupta Shuaib Memon 《Computers, Materials & Continua》 SCIE EI 2021年第9期3147-3165,共19页
In software-defined networks(SDNs),controller placement is a critical factor in the design and planning for the future Internet of Things(IoT),telecommunication,and satellite communication systems.Existing research ha... In software-defined networks(SDNs),controller placement is a critical factor in the design and planning for the future Internet of Things(IoT),telecommunication,and satellite communication systems.Existing research has concentrated largely on factors such as reliability,latency,controller capacity,propagation delay,and energy consumption.However,SDNs are vulnerable to distributed denial of service(DDoS)attacks that interfere with legitimate use of the network.The ever-increasing frequency of DDoS attacks has made it necessary to consider them in network design,especially in critical applications such as military,health care,and financial services networks requiring high availability.We propose a mathematical model for planning the deployment of SDN smart backup controllers(SBCs)to preserve service in the presence of DDoS attacks.Given a number of input parameters,our model has two distinct capabilities.First,it determines the optimal number of primary controllers to place at specific locations or nodes under normal operating conditions.Second,it recommends an optimal number of smart backup controllers for use with different levels of DDoS attacks.The goal of the model is to improve resistance to DDoS attacks while optimizing the overall cost based on the parameters.Our simulated results demonstrate that the model is useful in planning for SDN reliability in the presence of DDoS attacks while managing the overall cost. 展开更多
关键词 SDN automated controller placement SBC ILP ddos attack
在线阅读 下载PDF
Cooperative Detection Method for DDoS Attacks Based on Blockchain 被引量:2
6
作者 Jieren Cheng Xinzhi Yao +6 位作者 Hui Li Hao Lu Naixue Xiong Ping Luo Le Liu Hao Guo Wen Feng 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期103-117,共15页
Distributed Denial of Service(DDoS)attacks is always one of the major problems for service providers.Using blockchain to detect DDoS attacks is one of the current popular methods.However,the problems of high time over... Distributed Denial of Service(DDoS)attacks is always one of the major problems for service providers.Using blockchain to detect DDoS attacks is one of the current popular methods.However,the problems of high time overhead and cost exist in the most of the blockchain methods for detecting DDoS attacks.This paper proposes a blockchain-based collaborative detection method for DDoS attacks.First,the trained DDoS attack detection model is encrypted by the Intel Software Guard Extensions(SGX),which provides high security for uploading the DDoS attack detection model to the blockchain.Secondly,the service provider uploads the encrypted model to Inter Planetary File System(IPFS)and then a corresponding Content-ID(CID)is generated by IPFS which greatly saves the cost of uploading encrypted models to the blockchain.In addition,due to the small amount of model data,the time cost of uploading the DDoS attack detection model is greatly reduced.Finally,through the blockchain and smart contracts,the CID is distributed to other service providers,who can use the CID to download the corresponding DDoS attack detection model from IPFS.Blockchain provides a decentralized,trusted and tamper-proof environment for service providers.Besides,smart contracts and IPFS greatly improve the distribution efficiency of the model,while the distribution of CID greatly improves the efficiency of the transmission on the blockchain.In this way,the purpose of collaborative detection can be achieved,and the time cost of transmission on blockchain and IPFS can be considerably saved.We designed a blockchain-based DDoS attack collaborative detection framework to improve the data transmission efficiency on the blockchain,and use IPFS to greatly reduce the cost of the distribution model.In the experiment,compared with most blockchain-based method for DDoS attack detection,the proposed model using blockchain distribution shows the advantages of low cost and latency.The remote authentication mechanism of Intel SGX provides high security and integrity,and ensures the availability of distributed models. 展开更多
关键词 Blockchain smart contract IPFS ddos attack
在线阅读 下载PDF
Entropy-Based Approach to Detect DDoS Attacks on Software Defined Networking Controller 被引量:2
7
作者 Mohammad Aladaileh Mohammed Anbar +2 位作者 Iznan H.Hasbullah Yousef K.Sanjalawe Yung-Wey Chong 《Computers, Materials & Continua》 SCIE EI 2021年第10期373-391,共19页
The Software-Defined Networking(SDN)technology improves network management over existing technology via centralized network control.The SDN provides a perfect platform for researchers to solve traditional network’s o... The Software-Defined Networking(SDN)technology improves network management over existing technology via centralized network control.The SDN provides a perfect platform for researchers to solve traditional network’s outstanding issues.However,despite the advantages of centralized control,concern about its security is rising.The more traditional network switched to SDN technology,the more attractive it becomes to malicious actors,especially the controller,because it is the network’s brain.A Distributed Denial of Service(DDoS)attack on the controller could cripple the entire network.For that reason,researchers are always looking for ways to detect DDoS attacks against the controller with higher accuracy and lower false-positive rate.This paper proposes an entropy-based approach to detect low-rate and high-rate DDoS attacks against the SDN controller,regardless of the number of attackers or targets.The proposed approach generalized the Rényi joint entropy for analyzing the network traffic flow to detect DDoS attack traffic flow of varying rates.Using two packet header features and generalized Rényi joint entropy,the proposed approach achieved a better detection rate than the EDDSC approach that uses Shannon entropy metrics. 展开更多
关键词 Software-defined networking ddos attack distributed denial of service Rényi joint entropy
在线阅读 下载PDF
Hadoop Based Defense Solution to Handle Distributed Denial of Service (DDoS) Attacks 被引量:2
8
作者 Shweta Tripathi Brij Gupta +2 位作者 Ammar Almomani Anupama Mishra Suresh Veluru 《Journal of Information Security》 2013年第3期150-164,共15页
Distributed denial of service (DDoS) attacks continues to grow as a threat to organizations worldwide. From the first known attack in 1999 to the highly publicized Operation Ababil, the DDoS attacks have a history of ... Distributed denial of service (DDoS) attacks continues to grow as a threat to organizations worldwide. From the first known attack in 1999 to the highly publicized Operation Ababil, the DDoS attacks have a history of flooding the victim network with an enormous number of packets, hence exhausting the resources and preventing the legitimate users to access them. After having standard DDoS defense mechanism, still attackers are able to launch an attack. These inadequate defense mechanisms need to be improved and integrated with other solutions. The purpose of this paper is to study the characteristics of DDoS attacks, various models involved in attacks and to provide a timeline of defense mechanism with their improvements to combat DDoS attacks. In addition to this, a novel scheme is proposed to detect DDoS attack efficiently by using MapReduce programming model. 展开更多
关键词 ddos dos DEFENSE Mechanism Characteristics HAdoOP MAPREDUCE
在线阅读 下载PDF
Explainable AI-Based DDoS Attacks Classification Using Deep Transfer Learning
9
作者 Ahmad Alzu’bi Amjad Albashayreh +1 位作者 Abdelrahman Abuarqoub Mai A.M.Alfawair 《Computers, Materials & Continua》 SCIE EI 2024年第9期3785-3802,共18页
In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by Io... In the era of the Internet of Things(IoT),the proliferation of connected devices has raised security concerns,increasing the risk of intrusions into diverse systems.Despite the convenience and efficiency offered by IoT technology,the growing number of IoT devices escalates the likelihood of attacks,emphasizing the need for robust security tools to automatically detect and explain threats.This paper introduces a deep learning methodology for detecting and classifying distributed denial of service(DDoS)attacks,addressing a significant security concern within IoT environments.An effective procedure of deep transfer learning is applied to utilize deep learning backbones,which is then evaluated on two benchmarking datasets of DDoS attacks in terms of accuracy and time complexity.By leveraging several deep architectures,the study conducts thorough binary and multiclass experiments,each varying in the complexity of classifying attack types and demonstrating real-world scenarios.Additionally,this study employs an explainable artificial intelligence(XAI)AI technique to elucidate the contribution of extracted features in the process of attack detection.The experimental results demonstrate the effectiveness of the proposed method,achieving a recall of 99.39%by the XAI bidirectional long short-term memory(XAI-BiLSTM)model. 展开更多
关键词 ddos attack classification deep learning explainable AI CYBERSECURITY
在线阅读 下载PDF
SDN中DDoS攻击检测与混合防御技术 被引量:3
10
作者 李小菲 陈义 《现代电子技术》 北大核心 2025年第2期85-89,共5页
DDoS攻击是软件定义网络(SDN)安全领域的一大威胁,严重威胁网络控制器及交换机等设备的正常运行,因此提出一种SDN中DDoS攻击检测与混合防御技术。在DDoS攻击检测方面,利用卡方检验值对SDN中控制器收到的Packet_In数据流内数据帧数量进... DDoS攻击是软件定义网络(SDN)安全领域的一大威胁,严重威胁网络控制器及交换机等设备的正常运行,因此提出一种SDN中DDoS攻击检测与混合防御技术。在DDoS攻击检测方面,利用卡方检验值对SDN中控制器收到的Packet_In数据流内数据帧数量进行统计分析,将高于数据流卡方阈值的数据流初步判断为可疑流;继续计算数据流与可疑流的相对Sibson距离,区分可疑流是DDoS攻击流还是正常突发流;最后通过计算数据流之间的Sibson距离,根据DDoS攻击流的特征,确定攻击流是否为DDoS攻击流。在DDoS攻击防御方面,采用共享流表空间支持和Packet_In报文过滤方法混合防御,被DDoS攻击的交换机流表空间过载,将过载流表引流到其他交换机,从而完成数据层的防御;溯源得到DDoS攻击MAC地址并进行Packet_In数据流过滤,完成控制层的防御。实验结果表明,所提方法可有效检测软件定义网络交换机和控制器内的DDoS攻击流,能够防御不同的DDoS攻击。 展开更多
关键词 软件定义网络 ddos攻击流 攻击检测 混合防御 卡方检验值 Sibson距离 流表空间共享
在线阅读 下载PDF
基于区块链的DDoS防护研究综述
11
作者 唐梅 万武南 +1 位作者 张仕斌 张金全 《计算机应用》 北大核心 2025年第11期3416-3423,共8页
随着网络安全威胁的日益加剧,分布式拒绝服务(DDoS)攻击一直是网络安全领域的研究难题。传统的DDoS防护方案通常依赖中心化架构,存在单点故障、数据篡改等问题,难以应对复杂多样的攻击场景。区块链技术凭借去中心化、不可篡改和透明性... 随着网络安全威胁的日益加剧,分布式拒绝服务(DDoS)攻击一直是网络安全领域的研究难题。传统的DDoS防护方案通常依赖中心化架构,存在单点故障、数据篡改等问题,难以应对复杂多样的攻击场景。区块链技术凭借去中心化、不可篡改和透明性等特性,为DDoS防护提供了新的解决思路。针对DDoS防护中的技术挑战,总结了基于区块链的DDoS防护研究进展。首先,介绍DDoS攻击的基本概念及其对传统网络、物联网(IoT)和软件定义网络(SDN)等环境的威胁,分析引入区块链技术的必要性与潜在优势;其次,从区块链结合智能合约、深度学习、跨域协作等方面,归纳并对比现有的DDoS防护机制;最后,结合区块链性能优化、多域协作以及实时响应等方面的技术难点,展望未来基于区块链的DDoS防护技术的发展方向,从而为网络安全领域的研究者提供理论参考,进一步推动区块链在DDoS防护中的实际应用。 展开更多
关键词 分布式拒绝服务攻击 区块链 物联网 软件定义网络 网络安全
在线阅读 下载PDF
Effectiveness of Built-in Security Protection of Microsoft’s Windows Server 2003 against TCP SYN Based DDoS Attacks
12
作者 Hari Krishna Vellalacheruvu Sanjeev Kumar 《Journal of Information Security》 2011年第3期131-138,共8页
Recent DDoS attacks against several web sites operated by SONY Playstation caused wide spread outage for several days, and loss of user account information. DDoS attacks by WikiLeaks supporters against VISA, MasterCar... Recent DDoS attacks against several web sites operated by SONY Playstation caused wide spread outage for several days, and loss of user account information. DDoS attacks by WikiLeaks supporters against VISA, MasterCard, and Paypal servers made headline news globally. These DDoS attack floods are known to crash, or reduce the performance of web based applications, and reduce the number of legitimate client connections/sec. TCP SYN flood is one of the common DDoS attack, and latest operating systems have some form of protection against this attack to prevent the attack in reducing the performance of web applications, and user connections. In this paper, we evaluated the performance of the TCP-SYN attack protection provided in Microsoft’s windows server 2003. It is found that the SYN attack protection provided by the server is effective in preventing attacks only at lower loads of SYN attack traffic, however this built-in protection is found to be not effective against high intensity of SYN attack traffic. Measurement results in this paper can help network operators understand the effectiveness of built-in protection mechanism that exists in millions of Windows server 2003 against one of the most popular DDoS attacks, namely the TCP SYN attack, and help enhance security of their network by additional means. 展开更多
关键词 Network Security TCP SYN BASED ddos attack Prevention of attacks
暂未订购
可编程数据平面DDoS检测与防御机制
13
作者 武文浩 张磊磊 +3 位作者 潘恒 李恩晗 周建二 李振宇 《软件学报》 北大核心 2025年第8期3831-3857,共27页
传统的分布式拒绝服务攻击(DDoS)检测与防御机制需要对网络流量进行镜像、采集以及远程集中式的攻击特征分析,这直接造成额外的性能开销,无法满足高性能网络的实时安全防护需求.随着可编程交换机等新型网络设备的发展,可编程数据平面能... 传统的分布式拒绝服务攻击(DDoS)检测与防御机制需要对网络流量进行镜像、采集以及远程集中式的攻击特征分析,这直接造成额外的性能开销,无法满足高性能网络的实时安全防护需求.随着可编程交换机等新型网络设备的发展,可编程数据平面能力得到增强,为直接在数据面进行高性能的DDoS攻击检测提供了实现基础.然而,当前已有的基于可编程数据面的DDoS攻击检测方法准确率低,同时受限于编程约束,难以在可编程交换机(如Intel Tofino)中进行直接部署.针对上述问题,提出了一种基于可编程交换机的DDoS攻击检测与防御机制.首先,使用基于源目地址熵值差的攻击检测机制判断DDoS攻击是否发生.在DDoS攻击发生时,设计了一种基于源目地址计数值差的攻击流量过滤机制,实现对DDoS攻击的实时防御.实验结果表明,该机制能够有效地检测并防御多种DDoS攻击.相较于现有工作,该机制在观察窗口级攻击检测中的准确率平均提升了17.75%,在数据包级攻击流量过滤中的准确率平均提升了3.7%. 展开更多
关键词 分布式拒绝服务攻击 可编程数据平面 异常检测 P4 网络安全
在线阅读 下载PDF
Detecting and Mitigating DDOS Attacks in SDNs Using Deep Neural Network
14
作者 Gul Nawaz Muhammad Junaid +5 位作者 Adnan Akhunzada Abdullah Gani Shamyla Nawazish Asim Yaqub Adeel Ahmed Huma Ajab 《Computers, Materials & Continua》 SCIE EI 2023年第11期2157-2178,共22页
Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks... Distributed denial of service(DDoS)attack is the most common attack that obstructs a network and makes it unavailable for a legitimate user.We proposed a deep neural network(DNN)model for the detection of DDoS attacks in the Software-Defined Networking(SDN)paradigm.SDN centralizes the control plane and separates it from the data plane.It simplifies a network and eliminates vendor specification of a device.Because of this open nature and centralized control,SDN can easily become a victim of DDoS attacks.We proposed a supervised Developed Deep Neural Network(DDNN)model that can classify the DDoS attack traffic and legitimate traffic.Our Developed Deep Neural Network(DDNN)model takes a large number of feature values as compared to previously proposed Machine Learning(ML)models.The proposed DNN model scans the data to find the correlated features and delivers high-quality results.The model enhances the security of SDN and has better accuracy as compared to previously proposed models.We choose the latest state-of-the-art dataset which consists of many novel attacks and overcomes all the shortcomings and limitations of the existing datasets.Our model results in a high accuracy rate of 99.76%with a low false-positive rate and 0.065%low loss rate.The accuracy increases to 99.80%as we increase the number of epochs to 100 rounds.Our proposed model classifies anomalous and normal traffic more accurately as compared to the previously proposed models.It can handle a huge amount of structured and unstructured data and can easily solve complex problems. 展开更多
关键词 Distributed denial of service(ddos)attacks software-defined networking(SDN) classification deep neural network(DNN)
在线阅读 下载PDF
基于深度学习的车联网的路网监测系统的DoS和DDoS攻击的入侵检测方法 被引量:2
15
作者 曹磊 温蜜 何蔚 《计算机应用与软件》 北大核心 2025年第1期303-311,共9页
面对日益复杂的交通路况,车联网成为提升智能路网监测系统性能的重要保证,它可以实现车载网、车际网、车辆与移动互联网之间的信息交互共享。然而DoS和DDoS网络攻击的频发,成为车联网可用性的严重威胁之一。针对传统入侵检测算法存在训... 面对日益复杂的交通路况,车联网成为提升智能路网监测系统性能的重要保证,它可以实现车载网、车际网、车辆与移动互联网之间的信息交互共享。然而DoS和DDoS网络攻击的频发,成为车联网可用性的严重威胁之一。针对传统入侵检测算法存在训练困难、分类精度低、泛化能力差的问题,提出一种高效的深度学习模型CNN-BiSRU。实验选择在最新的CICIDS2018数据集中进行验证,结果表明,该模型获得了更高的检测精度,而相比于CNN-BiLSTM,CNN-BiSRU拥有更快的检测速度。 展开更多
关键词 入侵检测 dos攻击 深度学习 车联网 路网监测系统
在线阅读 下载PDF
基于贪心算法优化工业控制系统数据冲突与DDoS攻击防御机制 被引量:1
16
作者 陈大 蔡肖 +1 位作者 孙彦斌 董崇武 《信息网络安全》 北大核心 2025年第6期943-954,共12页
在现代数字网络工业控制系统中,数据冲突和DDoS攻击严重威胁系统的安全与稳定。文章提出基于贪心算法优化工业控制系统数据冲突与DDoS攻击防御机制,用于同时解决数据冲突与DDoS攻击问题。首先,构建基于贪心算法的自适应资源分配模型,通... 在现代数字网络工业控制系统中,数据冲突和DDoS攻击严重威胁系统的安全与稳定。文章提出基于贪心算法优化工业控制系统数据冲突与DDoS攻击防御机制,用于同时解决数据冲突与DDoS攻击问题。首先,构建基于贪心算法的自适应资源分配模型,通过实时监测网络流量和系统状态,动态调整优先级分配策略,从而有效避免数据冲突并防御DDoS攻击。其次,基于Lyapunov定理设计控制器与观测器,进一步提升系统对数据冲突和DDoS攻击的应对能力。分析结果表明,文章所提方法能显著降低数据冲突的发生频率,并有效增强系统抵御DDoS攻击的能力。此外,通过无人机倒立摆系统的仿真实验进一步验证了该方法的有效性,为数字网络工业控制系统的安全防护提供了一种解决方案。 展开更多
关键词 数字网络工业控制系统 数据冲突 ddos攻击 贪心算法 自适应资源分配
在线阅读 下载PDF
Big Data & DDoS ATTACKS: A Discussion of Ensemble Algorithms to Detect Cyber Attacks
17
作者 Anja Housden-Brooks 《Journal of Computer and Communications》 2024年第12期246-265,共20页
The use of machine learning algorithms to identify characteristics in Distributed Denial of Service (DDoS) attacks has emerged as a powerful approach in cybersecurity. DDoS attacks, which aim to overwhelm a network or... The use of machine learning algorithms to identify characteristics in Distributed Denial of Service (DDoS) attacks has emerged as a powerful approach in cybersecurity. DDoS attacks, which aim to overwhelm a network or service with a flood of malicious traffic, pose significant threats to online systems. Traditional methods of detection and mitigation often struggle to keep pace with the evolving nature of these attacks. Machine learning, with its ability to analyze vast amounts of data and recognize patterns, offers a robust solution to this challenge. The aim of the paper is to demonstrate the application of ensemble ML algorithms, namely the K-Means and the KNN, for a dual clustering mechanism when used with PySpark to collect 99% accurate data. The algorithms, when used together, identify distinctive features of DDoS attacks that prove a very accurate reflection of reality, so they are a good combination for this aim. Impressively, having preprocessed the data, both algorithms with the PySpark foundation enabled the achievement of 99% accuracy when tuned on the features of a DDoS big dataset. The semi-supervised dataset tabulates traffic anomalies in terms of packet size distribution in correlation to Flow Duration. By training the K-Means Clustering and then applying the KNN to the dataset, the algorithms learn to evaluate the character of activity to a greater degree by displaying density with ease. The study evaluates the effectiveness of the K-Means Clustering with the KNN as ensemble algorithms that adapt very well in detecting complex patterns. Ultimately, cross-reaching environmental results indicate that ML-based approaches significantly improve detection rates compared to traditional methods. Furthermore, ensemble learning methods, which combine two plus multiple models to improve prediction accuracy, show greatness in handling the complexity and variability of big data sets especially when implemented by PySpark. The findings suggest that the enhancement of accuracy derives from newer software that’s designed to reflect reality. However, challenges remain in the deployment of these systems, including the need for large, high-quality datasets and the potential for adversarial attacks that attempt to deceive the ML models. Future research should continue to improve the robustness and efficiency of combining algorithms, as well as integrate them with existing security frameworks to provide comprehensive protection against DDoS attacks and other areas. The dataset was originally created by the University of New Brunswick to analyze DDoS data. The dataset itself was based on logs of the university’s servers, which found various DoS attacks throughout the publicly available period to totally generate 80 attributes with a 6.40GB size. In this dataset, the label and binary column become a very important portion of the final classification. In the last column, this means the normal traffic would be differentiated by the attack traffic. Further analysis is then ripe for investigation. Finally, malicious traffic alert software, as an example, should be trained on packet influx to Flow Duration dependence, which creates a mathematical scope for averages to enact. In achieving such high accuracy, the project acts as an illustration (referenced in the form of excerpts from my Google Colab account) of many attempts to tune. Cybersecurity advocates for more work on the character of brute-force attack traffic and normal traffic features overall since most of our investments as humans are digitally based in work, recreational, and social environments. 展开更多
关键词 K-Means Clustering The KNN Algorithm PySpark Ensemble Learning Methods ddos attacks Veracity Malicious Traffic Alert Systems
在线阅读 下载PDF
基于超参数优化和LightGBM算法的DDoS攻击检测与分类
18
作者 胡宏伟 孙皓月 《网络安全与数据治理》 2025年第7期15-19,26,共6页
针对分布式拒绝服务攻击(DDoS)数据流量样本容量大、数据特征多的特点以及检测分类准确率低的问题,提出了一种基于LightGBM(Light Gradient Boosting Machine)算法的DDoS攻击检测与分类方法。在CICDDoS2019数据集预处理和特征筛选的基础... 针对分布式拒绝服务攻击(DDoS)数据流量样本容量大、数据特征多的特点以及检测分类准确率低的问题,提出了一种基于LightGBM(Light Gradient Boosting Machine)算法的DDoS攻击检测与分类方法。在CICDDoS2019数据集预处理和特征筛选的基础上,构建LightGBM检测模型和多分类模型。同时在模型预训练时,采用随机网格搜索与贝叶斯超参数优化技术实现超参数自动调优。实验结果表明,该模型在检测与分类任务上能达到98.34%的准确率。该研究为DDoS攻击提供了一种高效且简易的检测与分类思路。 展开更多
关键词 ddos攻击 超参数优化 LightBGM 检测与分类
在线阅读 下载PDF
基于多模态深度神经网络的无线传感网络DDoS攻击防御算法
19
作者 刘阳 李貌 冯浩 《传感技术学报》 北大核心 2025年第6期1097-1101,共5页
当无线传感网络遭受DDoS攻击时,极有可能导致网络服务中断、资源耗尽或网络性能下降等问题,严重威胁网络的安全性。为此,提出了基于多模态深度神经网络的无线传感网络DDoS攻击防御算法。将无线传感网络信号进行短时阶傅里叶变换(Short-T... 当无线传感网络遭受DDoS攻击时,极有可能导致网络服务中断、资源耗尽或网络性能下降等问题,严重威胁网络的安全性。为此,提出了基于多模态深度神经网络的无线传感网络DDoS攻击防御算法。将无线传感网络信号进行短时阶傅里叶变换(Short-Time Fourier Transform,STFT),对STFT后的信号进行奇异值分解(Singular Value Decomposition,SVD),以增强数据信号。将增强后的数据信号输入到多模态深度神经网络模型,并利用卷积层提取多模态特征,通过多模态特征的融合和学习,增强模型区分攻击数据和正常数据的能力。采用EWC算法对模型中的参数进行更新,进一步提高防御效果。仿真结果表明,所提算法的报文到达率在0.94以上,网络传输延时低于0.03 s,误警率稳定在0.6%以内,具有良好的DDoS攻击防御性能。 展开更多
关键词 无线传感网络 ddos攻击防御 多模态深度神经网络 奇异值分解 参数更新
在线阅读 下载PDF
基于LSTM算法的无线传感网络DDoS攻击抑制方法
20
作者 贾俊 王云花 《传感技术学报》 北大核心 2025年第9期1668-1674,共7页
无线传感网络DDoS攻击抑制由于未充分考虑网络流量模式中的非线性关系,导致攻击识别不准确,进而影响了DDoS攻击抑制的报文到达率和异常流量抑制效果。为了解决这一问题,提出一种基于LSTM算法的无线传感网络DDoS攻击抑制方法。利用哈里... 无线传感网络DDoS攻击抑制由于未充分考虑网络流量模式中的非线性关系,导致攻击识别不准确,进而影响了DDoS攻击抑制的报文到达率和异常流量抑制效果。为了解决这一问题,提出一种基于LSTM算法的无线传感网络DDoS攻击抑制方法。利用哈里斯鹰种群算法从海量的网络流量信息中提取并量化关键特征。为了改进LSTM算法对非线性关系的处理能力,引入了算术平均滤波,将关键特征作为LSTM的输入,并采用Sigmoid非线性函数作为激活函数,以更准确地识别DDoS攻击。一旦DDoS攻击被识别,系统会迅速实施溯源,并在攻击源头进行速率限制,抑制DDoS攻击,保护无线传感网络的稳定运行。实验结果表明:改进后的LSTM算法在ROC曲线上的表现更接近左上角,表明其识别性能更优。并且实施速率限制抑制方法后,报文到达率保持在0.7以上,显著抑制了异常流量,验证了速率限制方法对DDoS攻击方面的有效性。 展开更多
关键词 无线传感网络 ddos攻击抑制 LSTM算法 速率限制 哈里斯鹰种群算法 关键特征信息
在线阅读 下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部