期刊文献+
共找到758篇文章
< 1 2 38 >
每页显示 20 50 100
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
1
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
Revealing the intrinsic connection between residual strain distribution and dissolution mode in Mg-Sc-Y-Ag anode for Mg-air battery 被引量:2
2
作者 Wei-li Cheng Xu-bang Hao +4 位作者 Jin-hui Wang Hui Yu Li-fei Wang Ze-qin Cui Cheng Chang 《Journal of Magnesium and Alloys》 2025年第3期1020-1033,共14页
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci... The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment. 展开更多
关键词 Mg-air batteries ANODE Residual strain distribution dissolution mode Discharge mechanism
在线阅读 下载PDF
In-situ observation on dissolution of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions in refining slag 被引量:1
3
作者 Yu-die Gu Ying Ren Li-feng Zhang 《Journal of Iron and Steel Research International》 2025年第2期376-387,共12页
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(... The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers. 展开更多
关键词 INCLUSION Confocal laser scanning microscope Refining slag dissolution kinetics
原文传递
The dilemma of Luhuitou fringing reefs:net dissolution in winter and enhanced acidification in summer
4
作者 Junxiao ZHANG Hui HUANG +4 位作者 Xiangcheng YUAN Yong LUO Haorui LIANG Peixi LIANG Xin XU 《Journal of Oceanology and Limnology》 2025年第3期785-802,共18页
Global coral reef ecosystems have been severely degraded due to the combined effects of climate change and human activities.Changes in the seawater carbonate system of coral reef ecosystems can reflect their status an... Global coral reef ecosystems have been severely degraded due to the combined effects of climate change and human activities.Changes in the seawater carbonate system of coral reef ecosystems can reflect their status and their responses to the impacts of climate change and human activities.Winter and summer surveys in 2019 found that the ecological community of the Luhuitou coral reef flat was dominated by macroalgae and corals,respectively,contrasting with the conditions 10 years ago.The Luhuitou fringing reefs were sources of atmospheric CO_(2) in both seasons.In winter,the daily variation range of dissolved inorganic carbon(DIC)in Luhuitou coral reefs was up to 450μmol/kg,while that of total alkalinity(TA)was only 68μmol/kg.This indicated that the organic production was significantly higher than the calcification process during this period.The TA/DIC was approximately 0.15,which was less than half of that in healthy coral reefs;hence,photosynthesis-respiration processes were the most important factors controlling daily changes in the seawater carbonate system.The net community production(NCP)of the Luhuitou coral reef ecosystem in winter was as high as 47.65 mmol C/(m^(2)·h).While the net community calcification(NCC)was approximately 3.35 and-4.15 mmol CaCO_(3)/(m^(2)·h)during the daytime and nighttime respectively.Therefore,the NCC for the entire day was-21.9 mmol CaCO_(3)/(m^(2)·d),indicating a net autotrophic dissolved state.In summer,the acidification was enhanced by thunderstorms and heavy rain with the highest seawater partial pressure of CO_(2)(p CO_(2))and lowest pH T.Over the past 10 years,the increase rate of seawater p CO_(2) in Luhuitou reef was approximately 13.3μatm/a***,six times that of the open ocean,while the decrease rate of pH was approximately 0.0083/a,being five times that of the global ocean.These findings underscore the importance of protecting and restoring Luhuitou fringing reef,as well as similar reefs worldwide. 展开更多
关键词 Luhuitou coral reef carbonate system ACIDIFICATION CALCIFICATION dissolution
在线阅读 下载PDF
Near-infrared responsive polycaprolactone coatings for magnesium implants:Photodynamic antibacterial and controllable dissolution
5
作者 Xi Liu Jinglong Pan +5 位作者 You Lv Xu Wang Xiaoze Ma Xinxin Zhang Guangyi Cai Zehua Dong 《Journal of Magnesium and Alloys》 2025年第4期1671-1684,共14页
Magnesium implants have received widespread attention in orthopaedic surgery.However,the mechanical degradation and concurrent inflammation caused by the rapid corrosion of Mg limits their applications.In this study,a... Magnesium implants have received widespread attention in orthopaedic surgery.However,the mechanical degradation and concurrent inflammation caused by the rapid corrosion of Mg limits their applications.In this study,a kind of unique core-shell heterojunction CuS@PPy nanostructures was synthesized and then incorporated in polycaprolactone(PCL)to construct an intelligent coating(CuS@PPy/PCL)on micro-arc-oxidized Mg implants.The PCL-based coating can realize near-infrared(NIR)-driven antibacterial and controllable Mg dissolution according to different bone healing stages.At the beginning of bone remodelling,the coating exhibits promising antibacterial properties with 99.67%and 99.17%efficacy against S.aureus and E.coli,respectively,thanks to the singlet oxygen(^(1)O_(2))and alkoxyl radicals(RO·)generated by the photodynamic effect of CuS@PPy heterojunction under low-power NIR light(1.5 W/cm^(2)).In the bone reparative stage,the PCL-based coating can maintain high corrosion resistance to meet the mechanical requirements of Mg implants in human body fluid.However,after the complete rehabilitation of bones,through a high-power(2 W/cm^(2))NIR light,the PCL-based coating changed from an elastic to a viscous flow state(44.7℃)under the photothermal effects of CuS@PPy,leading to quick degradation of the PCL-based coating and following accelerating dissolution of the Mg implant(avoiding secondary surgery).Hopefully,this NIR-responsive coating may provide an innovative method for the antibacterial and controllable dissolution of Mg implants. 展开更多
关键词 MAGNESIUM Near infrared irradiation Photodynamic antibacterial Photothermal effect Controlled dissolution
暂未订购
Electrochemical dissolution,reduction,and nucleation mechanisms of molybdenum in NaCl-KCl molten salt systems
6
作者 Hongzhan Lv Liwen Zhang +1 位作者 Xiaoli Xi Zuoren Nie 《Journal of Materials Science & Technology》 2025年第35期45-54,共10页
This study investigates the anodic dissolution and electrochemical behavior of molybdenum in a NaCl-KCl molten salt system at 1023 K.The anodic dissolution process was systematically analyzed,revealing a sequential ox... This study investigates the anodic dissolution and electrochemical behavior of molybdenum in a NaCl-KCl molten salt system at 1023 K.The anodic dissolution process was systematically analyzed,revealing a sequential oxidation pathway of molybdenum into high-valence ions(Mo^(6+),Mo^(5+),Mo^(4+))under vary-ing electrolysis potentials.Electrochemical Impedance Spectroscopy(EIS)demonstrated that the dissolu-tion is governed by both charge transfer and diffusion mechanisms,with reduced impedance at higher potentials facilitating molybdenum dissolution.The reduction behavior of dissolved molybdenum ions was further explored using cyclic voltammetry(CV)and square wave voltammetry(SWV),confirming a multi-step reduction process controlled by diffusion and high reversibility.Nucleation studies using chronoamperometry established that molybdenum deposition follows an instantaneous nucleation mech-anism.Morphological analysis of cathodic deposits revealed that current density significantly influences particle size,transitioning from nano-sized spherical particles to larger equiaxed crystals with increasing current density.These findings provide a comprehensive understanding of molybdenum’s electrochemical properties in molten salts,offering valuable insights for optimizing electrolysis processes and advancing molybdenum-based material production. 展开更多
关键词 Molybdenum electrolysis Molten salt system Anodic dissolution Electrochemical behavior Nucleation mechanism
原文传递
Impact of dissolution and precipitation on pore structure in CO_(2)sequestration within tight sandstone reservoirs
7
作者 Hui Gao Kai-Qing Luo +6 位作者 Chen Wang Teng Li Zhi-Lin Cheng Liang-Bin Dou Kai Zhao Nan Zhang Yue-Liang Liu 《Petroleum Science》 2025年第2期868-883,共16页
Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehens... Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehensive physical simulation experiments were conducted under varied pressures,coupled with assessments of changes in mineral composition,ion concentrations,pore morphology,permeability,and sequestration capacity before and after experimentation.Simultaneously,a method using NMR T2spectra changes to measure pore volume shift and estimate CO_(2)sequestration is introduced.It quantifies CO_(2)needed for mineralization of soluble minerals.However,when CO_(2)dissolves in crude oil,the precipitation of asphaltene compounds impairs both seepage and storage capacities.Notably,the impact of dissolution and precipitation is closely associated with storage pressure,with a particularly pronounced influence on smaller pores.As pressure levels rise,the magnitude of pore alterations progressively increases.At a pressure threshold of 25 MPa,the rate of change in small pores due to dissolution reaches a maximum of 39.14%,while precipitation results in a change rate of-58.05%for small pores.The observed formation of dissolution pores and micro-cracks during dissolution,coupled with asphaltene precipitation,provides crucial insights for establishing CO_(2)sequestration parameters and optimizing strategies in low permeability reservoirs. 展开更多
关键词 dissolution PRECIPITATION Pore structure CO_(2)sequestration Unconventional reservoirs
原文传递
In-situ confocal microscopy study on dissolution kinetics of calcium aluminate inclusions in CaO-Al_(2)O_(3)-SiO_(2)type steelmaking slags
8
作者 Guang Wang Muhammad Nabeel +2 位作者 Wangzhong Mu A.B.Phillion Neslihan Dogan 《Journal of Iron and Steel Research International》 2025年第2期364-375,共12页
Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects... Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects of temperature(i.e.,1500,1550,and 1600℃)and slag composition on the dissolution time of CA_(2)particles are investigated,along with the time dependency of the projection area of the particle during the dissolution process.It is found that the dissolution rate was enhanced by either an increase in temperature or a decrease in slag viscosity.Moreover,a higher ratio of CaO/Al_(2)O_(3)(C/A)leads to an increased dissolution rate of CA_(2)particle at 1600℃.Thermodynamic calculations suggested the dissolution product,i.e.,melilite,formed on the surface of the CA_(2)particle during dissolution in slag with a C/A ratio of 3.8 at 1550℃.Scanning electron microscopy equipped with energy dispersive X-ray spectrometry analysis of as-quenched samples confirmed the dissolution path of CA_(2)particles in slags with C/A ratios of 1.8 and 3.8 as well as the melilite formed on the surface of CA_(2)particle.The formation of this layer during the dissolution process was identified as a hindrance,impeding the dissolution of CA_(2)particle.A valuable reference for designing or/and choosing the composition of top slag for clean steel production is provided,especially using calcium treatment during the secondary refining process. 展开更多
关键词 In-situ observation dissolution kinetics Confocal laser scanning microscope Calcium aluminate inclusion Steelmaking slag Clean steel
原文传递
Numerical Modelling of CO_(2) Plume Evolution and Dissolution in a Stratified Saline Aquifer
9
作者 Bohao Wu Xiuqi Zhang +1 位作者 Haoheng Liu Yulong Ji 《Fluid Dynamics & Materials Processing》 2025年第10期2359-2387,共29页
Geological sequestration of carbon dioxide(CO_(2))entails the long-term storage of captured emissions from CCUS(Carbon Capture,Utilization,and Storage)facilities in deep saline aquifers to mitigate greenhouse gas accu... Geological sequestration of carbon dioxide(CO_(2))entails the long-term storage of captured emissions from CCUS(Carbon Capture,Utilization,and Storage)facilities in deep saline aquifers to mitigate greenhouse gas accumulation.Among various trapping mechanisms,dissolution trapping is particularly effective in enhancing storage security.However,the stratified structure of saline aquifers plays a crucial role in controlling the efficiency of CO_(2) dissolution into the resident brine.In this study,a two-dimensional numerical model of a stratified saline aquifer is developed,integrating both two-phase flow and mass transfer dynamics.The model captures the temporal evolution of gas saturation,reservoir pressure,and CO_(2) dissolution behavior under varying geological and operational conditions.Specifically,the effects of porosity heterogeneity,permeability distribution,and injection rate on the dissolution process are examined,and sequestration efficiencies across distinct stratigraphic layers are compared.Simulation results reveal that in the early phase of CO_(2) injection,the plume spreads radially along the lower portion of the aquifer.With continued injection,high-saturation regions expand upward and eventually accumulate beneath the shale and caprock layers.Pressure within the reservoir rises in response to CO_(2) injection,propagating both vertically and laterally.CO_(2) migration and dissolution are strongly influenced by reservoir properties,with progressive dissolution occurring in the pore spaces of individual layers.High-porosity zones favor CO_(2) accumulation and enhance local dissolution,whereas low-porosity regions facilitate vertical diffusion.An increase in porosity from 0.25 to 0.30 reduces the radial extent of dissolution in the high-permeability layer by 16.5%.Likewise,increasing permeability promotes radial dispersion;each 10 mD increment extends the CO_(2) dissolution front by approximately 18 m.Elevated injection rates intensify both vertical and lateral plume migration:every 0.25×10^(−6) m/s increase in rate yields an average 100–120 m increase in radial dissolution distance within high-permeability zones. 展开更多
关键词 Stratified saline aquifer CO_(2)migration dissolution POROSITY PERMEABILITY
在线阅读 下载PDF
Increasing plant diversity exacerbates tufa dissolution: A case study of central Guizhou karst tufa landscape, China
10
作者 LIU Zhiming ZHANG Zhaohui +2 位作者 WANG Zhihui LI Chenyi SHEN Jiachen 《Journal of Mountain Science》 2025年第4期1343-1358,共16页
Tufa is an important type of landscape in karst regions.In recent years,the loss of landscape diversity due to tufa dissolution is affecting the stability of local ecosystems.Therefore,determining the factors and thei... Tufa is an important type of landscape in karst regions.In recent years,the loss of landscape diversity due to tufa dissolution is affecting the stability of local ecosystems.Therefore,determining the factors and their mechanisms involved in tufa dissolution is important for preserving regional landscape diversity and local ecosystem stability.In this study,we selected four tufa sites with different degrees of dissolution(undissolved tufa,lightly dissolved tufa,moderately dissolved tufa,and heavily dissolved tufa)in Xiangzhigou karst region of Guizhou Province as the study objects.We explored the effects of natural plant colonization on tufa dissolution using changes inαandβdiversity indices,soil physicochemical indicators,tufa components,and tufa substrate.The results indicated that the Shannon-wiener index,Simpson index and Patrick richness index gradually increased with tufa's increasing degree of dissolution.Additionally,the dissolution degree exhibited a significantly negative correlation with the species diversity(p<0.05).Natural vegetation colonization is the primary cause of changes in the proportion of tufa components and changes in the physicochemical properties of overlying tufa soils.The proportion of CaO components decreased significantly,and the proportion of loss on ignition components increased significantly.Soil organic carbon,pH,total nitrogen,available nitrogen,total phosphorus,available phosphorus,total potassium,available potassium,β-glucosidase,and urease gradually increased with deeper tufa dissolution and were negatively correlated with the degree of dissolution(p<0.05).It indicates that tufa is a process of dissolution into the soil and gradual improvement of the physicochemical properties of the overlying soil.Furthermore,scanning electron micrographs revealed the transition from dense to fragmented tufa structure under the influence of plants.In conclusion,this study found that improving plant diversity exacerbated tufa dissolution.Our findings provide a theoretical reference for the preventing and controlling of tufa dissolution in karst. 展开更多
关键词 Karst landform Tufa dissolution Natural vegetation colonization Vegetation diversity Soil formation Soil physicochemical properties
原文传递
Rapid lime dissolution for efficient dephosphorization by self-disintegrating effect of core–shell structured lime in converter slag
11
作者 Jia-xin Zhang Yu-feng Tian +1 位作者 Guang-qiang Li Yu Liu 《Journal of Iron and Steel Research International》 2025年第9期3089-3095,共7页
The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is m... The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is mainly attributed to the calcium silicate layer at the lime/slag interface.CO_(2)generated by CaCO_(3)decomposition can destroy the calcium silicate layer,and thus accelerates the dissolution of limestone and core–shell structured lime.However,in the initial stage,a large amount of CO_(2)emission generated by limestone decomposition results in the poor contact between molten slag and limestone,and the dissolution rate is slower in the test of limestone than that of lime.For core–shell structured lime,the initial dissolution rate is not affected due to the lime surface,and is accelerated by the appropriate CO_(2)emission.Rapid CaO pickup in molten slag by fast dissolution of the lime sample can remarkably accelerate the dephosphorization reaction.Because of the fastest dissolution rate,the core–shell structured lime slagging mode shows the most promising prospects for the efficient dephosphorization. 展开更多
关键词 Lime dissolution DEPHOSPHORIZATION Slag-metal interaction Core-shell structured lime CaCO_(3)decomposition
原文传递
Petroleum recovery from salt cavern through natural gas displacement:Insights from a gas-oil two-phase flow model with gas dissolution and exsolution
12
作者 You-Qiang Liao Tong-Tao Wang +3 位作者 Tao He Dong-Zhou Xie Kai Xie Chun-He Yang 《Petroleum Science》 2025年第10期4226-4239,共14页
The challenge of wide brine source and its additional problems come from the economy(energy consumption and other costs),security(re-dissolution of surrounding salt rocks),and environment(groundwater pollution by brin... The challenge of wide brine source and its additional problems come from the economy(energy consumption and other costs),security(re-dissolution of surrounding salt rocks),and environment(groundwater pollution by brine)of salt cavern oil storage are worth examining to improve the efficiency of oil storage.Against this background,this work presented an operating mode of salt cavern oil and gas co-storage and using natural gas displacement for petroleum recovery.A gas-oil two-phase flow model with gas dissolution and exsolution was proposed to evaluate the application prospects of the new method precisely.Numerical studies indicated that the gas void fraction at the wellhead under quasi-steady state conditions is approximately 0.153,which belongs to bubbly flow,and the pressure at the wellhead of the central tube increased from 5.54 to 6.12 MPa during the entire transient flow stage,with an increase of 10.47%.Compared to the traditional method of using brine as the working fluid,the pump pressure rises from 2.92 to 14.01 MPa.However,if the new mode can be linked with the salt cavern gas storage and when the initial wellhead gas pressure exceeds 13 MPa,the energy consumption of the new method will be lower than that of the traditional brine-based operational mode.A new empirical formula is proposed to determine the two-phase flow pattern under different operating parameters.A special focus was given to energy consumption for oil recovery,which grows roughly in accordance with the operating pressure and oil recovery rate.However,the energy cost per volume of crude oil remains almost unchanged.This work provided a new solution for the serious brine problem and is expected to achieve petroleum recovery through natural gas displacement. 展开更多
关键词 Petroleum recovery Natural gas displacement Feasibility analysis Salt cavern Gas-oil two-phase flow Gas dissolution and exsolution
原文传递
Dynamic instantaneous dissolution of the precipitates in aged Mg-Zn-Zr alloy at high strain rate
13
作者 LIU Yue-yang YANG Yang +6 位作者 HU Li-xiang CHEN Yi KE Yu-bin LI Dan WEI Shao-hong XU Wen-lin CHEN Xiang 《Journal of Central South University》 2025年第6期2038-2050,共13页
The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmiss... The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmission electron microscopy(TEM)observations showed that the precipitatedβ′_(1) phases partially dissolved(spheroidized)with blurred interfaces within 160μs at 3000 s^(−1).The average length and diameter of the rod-shapedβ′_(1) phase particles were 48.5 and 9.8 nm after the T 6 heat treatment;while the average diameter of the sphericalβ′_(1) phases changed to 8.8 nm after loading.The deformedβ′_(1) phase generated larger lattice distortion energy than Mg matrix under high strain rate loading.Therefore,the difference of free energy(the driving force of dissolution)between theβ′_(1) phase and the matrix increased,making the instantaneous dissolution of theβ′_(1) phase thermodynamically feasible.The dissolution(spheroidization)of theβ′_(1) phase particles was kinetically promoted because the diffusion rate of the solute Zn atoms was accelerated by combined actions of adiabatic temperature rise,high density of dislocations(vacancies)and high deviatoric stresses during high strain rate loading.The increase in hardness of ZK 60-T 6 alloy could be attributed to solid solution strengthening,dislocation strengthening and second phase particle strengthening. 展开更多
关键词 dynamic dissolution(spheroidization) THERMODYNAMICS kinetics high strain rate ZK 60-T 6 magnesium alloy
在线阅读 下载PDF
Insights into the dissolution kinetics of copper-nickel tailings for CO_(2)mineral sequestration
14
作者 Zhenghong Yang Haiyun Gu +3 位作者 Sijia Liu Kai Wu Linglin Xu Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2119-2130,共12页
Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated thro... Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated through a leaching experiment and kinetic modeling,and the effects of reaction time,HCl concentration,solid-to-liquid ratio,and reaction temperature on the leaching rate of mag-nesium were comprehensively studied.Results show that the suitable leaching conditions for magnesium in CNTs are 2 M HCl,a solid-to-liquid ratio of 50 g·L^(−1),and 90℃,at which the maximum leaching rate of magnesium is as high as 83.88%.A modified shrinking core model can well describe the leaching kinetics of magnesium.The dissolution of magnesium was dominated by a combination of chemical reaction and product layer diffusion,with a calculated apparent activation energy of 77.51 kJ·mol^(−1).This study demonstrates the feasibil-ity of using CNTs as a media for CO_(2)mineral sequestration. 展开更多
关键词 copper-nickel tailings dissolution kinetics magnesium leaching shrinking core model CO_(2)mineral sequestration
在线阅读 下载PDF
Effect of surface dissolution on flotation separation of fine ilmenite from titanaugite 被引量:23
15
作者 朱阳戈 张国范 +2 位作者 冯其明 鄢代翠 王维清 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1149-1154,共6页
The influence of surface dissolution on flotation separation of fine ilmenite from titanaugite was investigated through infrared spectroscopic (FT-IR) analysis and X-ray photoelectron spectroscopy (XPS) test. The ... The influence of surface dissolution on flotation separation of fine ilmenite from titanaugite was investigated through infrared spectroscopic (FT-IR) analysis and X-ray photoelectron spectroscopy (XPS) test. The results show that surface dissolution in weak acid solution is helpful to enlarge the floatability difference between ilmenite and titanaugite. In weak acidic solution, as sodium oleate mainly interacts with Fe which results in ilmenite flotation, and surface dissolution is beneficial to its oxidation, the floatability of ilmenite after surface dissolution is increased; meanwhile, sodium oleate interacts with Ca and Mg which results in titanangite flotation, and the quantities of Ca and Mg on the surface of titanautite are decreased due to the surface dissolution, so the floatability of titanaugite after surface dissolution is depressed. For an ilmenite ore obtained from Panzhihua with TiO2 grade of 8.41%, flotation after surface dissolution treatment could increase TiO2 grade of rough concentrate from 26.7% to 31.73 %. 展开更多
关键词 ILMENITE titanaugite FLOTATION surface dissolution
在线阅读 下载PDF
Comparison of electrochemical dissolution of chalcopyrite and bornite in acid culture medium 被引量:6
16
作者 赵红波 胡明皓 +4 位作者 李旖旎 朱珊 覃文庆 邱冠周 王军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期303-313,共11页
The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was mu... The electrochemical dissolution process of chalcopyrite and bornite in acid bacteria culture medium was investigated by electrochemical measurements and X-ray photoelectron spectroscopy(XPS) analysis. Bornite was much easier to be oxidized rather than to be reduced, and chalcopyrite was difficult to be both oxidized and reduced. The relatively higher copper extraction of bornite dissolution can be attributed to its higher oxidation rate. Covellite(CuS) was detected as the intermediate species during the dissolution processes of both bornite and chalcopyrite. Bornite dissolution was preferred to be a direct oxidation pathway, in which bornite was directly oxidized to covellite(CuS) and cupric ions, and the formed covellite(CuS) may inhibit the further dissolution. Chalcopyrite dissolution was preferred to be a continuous reduction-oxidation pathway, in which chalcopyrite was initially reduced to bornite, then oxidized to covellite(CuS), and the initial reduction reaction was the rate-limiting step. 展开更多
关键词 CHALCOPYRITE BORNITE electrochemical dissolution acid culture medium BIOLEACHING
在线阅读 下载PDF
Contact reactive brazing of Al alloy/Cu/stainless steel joints and dissolution behaviors of interlayer 被引量:10
17
作者 吴铭方 司乃潮 陈健 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期1035-1039,共5页
Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu int... Contact reactive brazing of 6063 Al alloy and 1Cr18Ni9Ti stainless steel was researched by using Cu as interlayer. Effect of brazing time on microstructure of the joints, as well as the dissolution behaviors of Cu interlayer was analyzed. The results show that the product of reaction zone near 1Cr18Ni9Ti is composed of Fe2Al5, FeAl3 intermetallic compound (IMC), and Cu-Al IMC; the near by area is composed of Al-Cu eutectic structure with Al (Cu) solid solution. With increasing the brazing time, the thickness of IMC layer at the interface increases, while the width of Al-Cu eutectic structure with Al(Cu) solution decreases. Calculation shows the dissolution rate of Cu interlayer is very fast. The complete dissolution time is about 0.47 s for Cu interlayer with 10 μm in thickness used in this study. 展开更多
关键词 Al alloy stainless steel contact reactive brazing MICROSTRUCTURE dissolution of interlayer
在线阅读 下载PDF
Effect of initial pH on chalcopyrite oxidation dissolution in the presence of extreme thermophile Acidianus manzaensis 被引量:4
18
作者 梁长利 夏金兰 +2 位作者 聂珍媛 余水静 许宝泉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1890-1897,共8页
The influence of initial pH on the chalcopyrite oxidation dissolution at 65 ℃ was investigated by bioleaching and cyclic voltammetiy experiments,and the oxidation products were investigated by XRD and Raman spectrosc... The influence of initial pH on the chalcopyrite oxidation dissolution at 65 ℃ was investigated by bioleaching and cyclic voltammetiy experiments,and the oxidation products were investigated by XRD and Raman spectroscopy.Bioleaching results show that chalcopyrite dissolution rate increases with the decrease of the initial pH in chemical leaching,while the influence of initial pH on bioleaching is on the contrary.The presence of Acidianus manzaensis does not promote chalcopyrite dissolution under initial pH1.0,which mainly results from serious inhibition of high acidity to the growth of Acidianus manzaensis.Electrochemical experiments results show that anodic oxidation currents of electrolyte with or without Acidianus manzaensis both increase with the increase of initial pH,and covellite and sulfur are detected on the electrode surface.The results confirm that chalcopyrite dissolution in chemical leaching is under the combined action of oxidation and non-oxidation of proton,with conversion of chalcopyrite to covellite and elemental sulfur. 展开更多
关键词 CHALCOPYRITE BIOLEACHING Acidianus manzaensis initial pH oxidation dissolution
在线阅读 下载PDF
Analysis and modeling of alumina dissolution based on heat and mass transfer 被引量:4
19
作者 詹水清 李茂 +2 位作者 周孑民 杨建红 周益文 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1648-1656,共9页
A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was use... A comprehensive heat and mass transfer model of dissolution process of non-agglomerated and agglomerated alumina particles was established in an aluminum reduction cell. An appropriate finite difference method was used to calculate the size dissolution rate, dissolution time and mass of alumina dissolved employing commercial software and custom algorithm based on the shrinking sphere assumption. The effects of some convection and thermal condition parameters on the dissolution process were studied. The calculated results show that the decrease of alumina content or the increase of alumina diffusion coefficient is beneficial for the increase of size dissolution rate and the decrease of dissolution time of non-agglomerated particles. The increase of bath superheat or alumina preheating temperature results in the increase of size dissolution rate and the decrease of dissolution time of agglomerated particles. The calculated dissolution curve of alumina(mass fraction of alumina dissolved) for a 300 k A aluminum reduction cell is in well accordance with the experimental results. The analysis shows that the dissolution process of alumina can be divided into two distinct stages: the fast dissolution stage of non-agglomerated particles and the slow dissolution stage of agglomerated particles, with the dissolution time in the order of 10 and 100 s, respectively. The agglomerated particles were identified to be the most important factor limiting the dissolution process. 展开更多
关键词 aluminum reduction cell alumina particles dissolution process heat and mass transfer finite difference method
在线阅读 下载PDF
Dissolution kinetics and mechanism of gibbsitic bauxite and pure gibbsite in sodium hydroxide solution under atmospheric pressure 被引量:4
20
作者 杨会宾 潘晓林 +2 位作者 于海燕 涂赣峰 孙俊民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第12期4151-4159,共9页
The crystal structure, morphology, dissolution kinetics and mechanism of gibbsitic bauxite and pure gibbsite in Na OH solution under atmospheric pressure were systematically investigated by XRD and SEM. The results sh... The crystal structure, morphology, dissolution kinetics and mechanism of gibbsitic bauxite and pure gibbsite in Na OH solution under atmospheric pressure were systematically investigated by XRD and SEM. The results show that the size of single crystal of gibbsite in gibbsitic bauxite is smaller than that in pure gibbsite, but the interplanar distance is larger than that of pure gibbsite, which result in more defects in the crystal and less energy needed to dissolve in alkaline solution for the gibbsitic bauxite. The dissolution kinetic equations of gibbsitic bauxite and pure gibbsite were established, and the corresponding activation energies were calculated to be 99.144 and 115.149 k J/mol, respectively. 展开更多
关键词 GIBBSITE crystal structure dissolution kinetics Bayer process
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部