We present a comprehensive investigation into the physical properties of intermetallic ErPd_(2)Si_(2),a compound renowned for its intriguing magnetic and electronic characteristics.We confirm the tetragonal crystal st...We present a comprehensive investigation into the physical properties of intermetallic ErPd_(2)Si_(2),a compound renowned for its intriguing magnetic and electronic characteristics.We confirm the tetragonal crystal structure of ErPd_(2)Si_(2)within the I4/mmm space group.Notably,we observed anisotropic thermal expansion,with the lattice constant a expanding and c contracting between 15 and300 K.This behaviour is attributed to lattice vibrations and electronic contributions.Heat capacity measurements revealed three distinct temperature regimes:T_(1)~3.0 K,T_(N)~4.20 K,and T_(2)~15.31 K.These correspond to thedisappearance of spin-density waves,the onset of an incommensurate antiferromagnetic(AFM)structure,and the crystal-field splitting and/or the presence of short-range spin fluctuations,respectively.Remarkably,the AFM phase transition anomaly was observed exclusively in lowfield magnetization data(120 Oe)at T_(N).A high magnetic field(B=3 T)effectively suppressed this anomaly,likely due to spin-flop and spin-flip transitions.Furthermore,the extracted effective paramagnetic(PM)moments closely matched the expected theoretical value,suggesting a dominant magnetic contribution from localized 4f spins of Er.Additionally,significant differences in resistance(R)values at low temperatures under applied B indicated a magnetoresistance(MR)effect with a minimum value of-4.36%.Notably,the measured MR effect exhibited anisotropic behavior,where changes in the strength or direction of the applied B induced variations in the MR effect.A twofold symmetry of R was discerned at 3 and9 T,originating from the orientation of spin moments relative to the applied B.Intriguingly,above T_(N),shortrange spin fluctuations also displayed a preferred orientation along the c-axis due to single-ion anisotropy.Moreover,the R demonstrated a clear B dependence below30 K.The magnetic-field point where R transitions from linear B dependence to a stable state increased with temperature:~3 T(at 2 K),~4.5 T(at 4 K),and~6 T(at 10 K).Our study sheds light on the magnetic and electronic properties of ErPd_(2)Si_(2),offering valuable insights for potential applications in spintronics and quantum technologies.展开更多
We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard m...We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.展开更多
In-line phase-contrast computed tomography(IL-PC-CT) imaging is a new physical and biochemical imaging method.IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, r...In-line phase-contrast computed tomography(IL-PC-CT) imaging is a new physical and biochemical imaging method.IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, ring artifacts which will reduce the image quality are commonly encountered in IL-PC-CT, and numerous correction methods exist to either pre-process the sinogram or post-process the reconstructed image. In this study, we develop an IL-PC-CT reconstruction method based on anisotropic total variation(TV) minimization. Using this method, the ring artifacts are corrected during the reconstruction process. This method is compared with two methods: a sinogram preprocessing correction technique based on wavelet-FFT filter and a reconstruction method based on isotropic TV. The correction results show that the proposed method can reduce visible ring artifacts while preserving the liver section details for real liver section synchrotron data.展开更多
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc...The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.展开更多
Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical sol...Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.展开更多
We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from in...We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from insulating to metallic states, while Anderson localization only arises under the modulation of Anderson disorder. By employing real-space topological invariant methods, we demonstrates that the system undergoes topological phase transitions under different disorder manipulations, whereas random flux modulation uniquely induces topological Anderson insulator phases, with the potential to generate states with opposite Chern numbers. These findings highlight the distinct roles of disorder in shaping the interplay between topology and localization, providing insights into stabilizing topological states and designing robust topological quantum materials.展开更多
Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aber...Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aberrations and pressure attenuation;these can distort and shift the acoustic focus,thus hindering the efficiency of tFUS therapy.To achieve effective treatments,phased array transducers combined with aberration correction algorithms are commonly implemented.The present report aims to provide a comprehensive review of the current methods used for tFUS phase aberration correction.We first searched the PubMed and Web of Science databases for studies on phase aberration correction algorithms,identifying 54 articles for review.Relevant information,including the principles of algorithms and refocusing performances,were then extracted from the selected articles.The phase correction algorithms involved two main steps:acoustic field estimation and transmitted pulse adjustment.Our review identified key benchmarks for evaluating the effectiveness of these algorithms,each of which was used in at least three studies.These benchmarks included pressure and intensity,positioning error,focal region size,peak sidelobe ratio,and computational efficiency.Algorithm performances varied under different benchmarks,thus highlighting the importance of application-specific algorithm selection for achieving optimal tFUS therapy outcomes.The present review provides a thorough overview and comparison of various phase correction algorithms,and may offer valuable guidance to tFUS researchers when selecting appropriate phase correction algorithms for specific applications.展开更多
The anisotropic Dicke model offers a platform for the exploration of numerous quantum many-body phenomena.Here,we propose a Floquet-engineered scheme to realize such a system with strong dipole-dipole interactions usi...The anisotropic Dicke model offers a platform for the exploration of numerous quantum many-body phenomena.Here,we propose a Floquet-engineered scheme to realize such a system with strong dipole-dipole interactions using Rydberg atom arrays in an optical cavity.By periodically modulating the microwave fields,the anisotropic parameter can be precisely controlled and tuned between zero and one,enabling the system to transition smoothly from being purely dominated by rotating-wave terms to being exclusively governed by counter-rotating wave excitations.Leveraging this tunability,we demonstrate enhanced preparation of adiabatic superradiant and superradiant solid phases where symmetryprotected energy gaps suppress undesired level crossings.Our approach,combining Rydberg interactions and cavitymediated long-range correlations,establishes a versatile framework for the quantum simulation of light-matter interactions and the exploration of exotic many-body phases.展开更多
A drawn high density polyethylene(HDPE)has been measured by Raman spectroscopy and differential scanning calorimetry (DSC). The crystalline structure of drawn HDPE is analysed by the Raman internal modes in terms ...A drawn high density polyethylene(HDPE)has been measured by Raman spectroscopy and differential scanning calorimetry (DSC). The crystalline structure of drawn HDPE is analysed by the Raman internal modes in terms of mass fractions of the crystalline orthorhombic phase, the liquid- like amorphous phase and the disordered anisotropic phase. The mass fractions depend on draw temperature T;and draw ratio R;. The fraction of disordered anisotropic amorphous phase changes very little with, the T;and increases with increasing R;. Sum of the mass fractions of crystalline orthorhombic phase and the disordered anisotropic phase increases linearly as the same slope as the crystallinity W;determined from DSC measurements with increasing T;or R;and it is higher than the W;for all the samples. The results show that the mass fraction of disordered anisotropic phase is partially devoted by the taut tie molecules (TTM s) in the amorphous state. The dependence of the disordered anisotropic phase on T;and R;supports the mechanism of plastic deformation of fibre structure.展开更多
In this work, the corrosion behavior of the surface parallel to the oriented c-axis(c‖) and perpendicular to c-axis(c⊥)in the(Ce_(0.15)Nd_(0.85))_(30)Fe_(bal)B dual main phase magnet was studied. With the addition o...In this work, the corrosion behavior of the surface parallel to the oriented c-axis(c‖) and perpendicular to c-axis(c⊥)in the(Ce_(0.15)Nd_(0.85))_(30)Fe_(bal)B dual main phase magnet was studied. With the addition of Ce,the volume fraction of RE-rich phase shown in the backscattered electron(BSE) images is basically approximate on the two surfaces. The free corrosion potential(E_(corr)) of the c‖ surface is more negative,which shows the worse corrosion resistance from the perspective of thermodynamics. While the reaction kinetics parameters with the smaller free corrosion current(i_(corr)) and the larger transfer resistance(R_(ct)) react the opposite conclusion in 3.5 wt% NaCl solution. Moreover, the c‖ surface performs smaller ions concentration of corrosion product and less damaged corrosion morphology compared to c⊥ surface after the free corrosion. The inconformity is not affected by the RE-rich phase, but by the anisotropy of the grains that the c‖ surface has larger density of the atoms and the lower ratio of(Nd, Ce)/Fe.展开更多
In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al...In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al_(2)O_(3), the novel ternary nano-layered M_(n+1)AX_(n)(MAX)phase carbide or nitride ceramics exhibit metal-like properties and self-lubricate capacity(where “M” is an early transition metal, “A” belongs to the group A element, “X” is C or/and N, and n = 1–3). Ti_(2)AlC, as the representative of the MAX phase, was interestingly introduced into the magnesium matrix. Layered Ti_(2)AlC MAX phased reinforced AZ91D magnesium composites manufactured through the stir casting exhibit sufficient deformation capacity due to unique deformation behaviors of MAX, namely delamination and the formation of kinking band. Further,the Ti_(2)AlC-AZ91D composites exhibit a distinctive characteristic in strengthening mechanism, damping mechanism and tribological capacity due to the other special properties of MAX phase, such as self-lubricated property. Accordingly, to give a comprehensive understanding, we overviewed the fabrication process, microstructural characterization, mechanical properties, damping property and tribological capacity on these composites. In order to understand the A-site effect in MAX phase on the microstructure, we introduced another representative Ti_(3)SiC_(2)MAX phase to explain the interfacial evolution. In addition, due to the high aspect ratio of MAX, MAX particles could be orientationally regulated in Mg matrix by plastic deformation such as hot extrusion. Herein, we discussed the anisotropic mechanical and physical properties of the textured composites produced by hot extrusion. Moreover, the potential applications and future development trends of MAX phases reinforced magnesium matrix composites were also given and prospected.展开更多
Ge2 Sb2 Te5 is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However...Ge2 Sb2 Te5 is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge_(2)Sb_(2)Te_(5) is available.This limits the optical switching states of traditional active displays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubichexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching performance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to introduce small interstitial impurities(like N)in Ge2 Sb2 Te5,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suitable impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb_(4) Te_(7),GeSb_(2) Te_(4),Ge_(3)Sb_(2) Te_(6),Sb_(2)Te_(3) will produce high optical contrast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.展开更多
Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent...Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent elastic parameters. Usually, this medium can be described by only the vertical phase velocity and the horizontal phase velocity for seismic wave propagation. Model parameteri- zation in this study is described by flexible triangular grids, which is beneficial for the description of irregular surface with high degree of approximation. Both the vertical and horizontal phase velocities are defined in the triangular grids, respectively, which are used for the description of phase velocity distribution everywhere in the model by linear interpolation. We develop a shooting ray tracing method of turning wave in the elliptically anisotropic media with irregular surface. Runge-Kutta method is applied to solve the partial differential equation of seismic ray in elliptically anisotropic media. Linearly modified method is used for adjusting emergent phase angles in the shooting scheme. Numerical tests demonstrate that ray paths coincide well with analytical trajectories in trans- versely homogeneous elliptically anisotropic media. Seis- mic ray tracing results in transversely inhomogeneous elliptically anisotropic media demonstrate that our method is effective for further first-arrival tomography in ellipti- cally anisotropic media with an irregular surface.展开更多
Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evol...Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.展开更多
The kinetics of internal boundaries relaxation: antiphase domain boundaries and interphase boundaries-in the conditions of high-temperature annealing and the structure transformations are investigated in homophase an...The kinetics of internal boundaries relaxation: antiphase domain boundaries and interphase boundaries-in the conditions of high-temperature annealing and the structure transformations are investigated in homophase and heterophase systems. Homophase systems look like ordered binary alloy and include antiphase domain boundaries of various orientation. Clear components border on ordered alloy in heterophase systems and two processes take place simultaneously here-disordering of binary alloy and solution in ordered phase of clear component. Computer experiment is realized in the sphere of temperatures close to the temperature of order-disorder phase transition in the limits of two-dimensional model of atom diffusion at the vacant knots of crystal lattics.展开更多
For poly(9,9-dioctylfluorene)(PFO),β phase (coplanar conformation with the intra-chain torsion angle of 165°) has a greater conjugation length and higher degree of order compared to those of α phase, which favo...For poly(9,9-dioctylfluorene)(PFO),β phase (coplanar conformation with the intra-chain torsion angle of 165°) has a greater conjugation length and higher degree of order compared to those of α phase, which favors charge carrier transport. However, the highest content of β phase obtained so far is 45%. We propose to increase the content of β phase by promoting the solution aggregation of PFO molecules and extending film-forming time. For this purpose, 1,8-diiodooctane (DIO) is added to PFO o-xylene solution, which enhances the interaction of PFO chains and improves the planarity of PFO backbone, resulting in the formation of ordered aggregation. The aggregates act as nucleation centers to promote the formation of β phase. The content of β phase increases with increasing DIO concentration and reaches a platform of 39% as DIO is more than 4 vol%. Furthermore, the film is kept in a sealed environment with oxylene atmosphere for 3 h, thus the PFO molecules have enough time to diffuse to the crystallization front and achieve disorder-order transition. As a result, the crystallinity of PFO is improved significantly and the content of β phase increases to 52%, reaching the highest value reported so far.展开更多
Order–disorder phase transitions for CH3NH3PbCl3 are studied with density functional theory. Our calculations show that the disorder is manifested in two aspects in the cubic phase, namely, the disorder of orientatio...Order–disorder phase transitions for CH3NH3PbCl3 are studied with density functional theory. Our calculations show that the disorder is manifested in two aspects in the cubic phase, namely, the disorder of orientation and rotation of organic groups. Organic groups of [CH3] and [NH3] in cubic crystals can easily rotate around its C3 axis. At the same time,[CH3NH3]^+ organic groups can also orient to different spatial directions due to the weak interactions between organic group and inorganic frame. Our results show that its possible phase transition path starts from the deviation of organic groups from the crystal c-axis. Its structural transition changes from disordered cubic phase to hydrogen-only disordered tetragonal structure in the process of decreasing symmetry. The disordered high temperature cubic phase can be expressed as a statistical average of substructures we rebuilt. The electrostatic repulsive force between adjacent organic groups triggers out the formation of low temperature phase on cooling.展开更多
First-principles pseudopotential calculations are performed to investigate the phase transition and elastic properties of niobium nitrides (NbN). The lattice parameters a0 and c0/a0, elastic constants Cu, bulk modul...First-principles pseudopotential calculations are performed to investigate the phase transition and elastic properties of niobium nitrides (NbN). The lattice parameters a0 and c0/a0, elastic constants Cu, bulk modulus B0, and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. The enthalpy calculations predict that NbN undergoes phase transition from NaCl-type to NiAs-type structure at 13.4 GPa with a volume collapse of about 4.0% and from AsNi-type to CW-type structure at 26.5 GPa with a volume collapse of about 7.0%. Among the four types of structures, CW-type is the most stable structure. The elastic properties are analyzed on the basis of the calculated elastic constants. Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail. The longitudinal and shear-wave velocities, Vr, Vs and V increase with increasing pressure, respectively. The Debye temperature OD increases monotonically with increasing pressure except for NiAs-type structure. Both the longitudinal velocity and the shear-wave velocity increase with pressure for wave vector along all the propagation directions, except for VTA([100]) and VTA[001]([110]) with NaCl structure and VTA[001]([100]) with the other three types of structures.展开更多
The properties of the two-dimensional quantum walk with point, line, and circle disorders in phase are reported.Localization is observed in the two-dimensional quantum walk with certain phase disorder and specific ini...The properties of the two-dimensional quantum walk with point, line, and circle disorders in phase are reported.Localization is observed in the two-dimensional quantum walk with certain phase disorder and specific initial coin states.We give an explanation of the localization behavior via the localized stationary states of the unitary operator of the walker+ coin system and the overlap between the initial state of the whole system and the localized stationary states.展开更多
We numerically study the phase behaviors of colloids with anisotropic diffusion in two dimensions. It is found that the diffusion anisotropy of colloidal particles plays an important role in the phase transitions. A s...We numerically study the phase behaviors of colloids with anisotropic diffusion in two dimensions. It is found that the diffusion anisotropy of colloidal particles plays an important role in the phase transitions. A strong diffusion anisotropy induces the large vibration of particles, subsequently, the system goes into a disordered state. In the presence of the strong-coupling, particles with weak diffusion anisotropy can freeze into hexagonal crystals. Thus, there exists a solid-liquid transition. With the degree of diffusion anisotropy increasing, the transition points are shifted to the strongercoupled region. A competition between the degree of diffusion anisotropy and coupling strength widens the transition region where the heterogeneous structures coexist, which results in a broad-peak probability distribution curve for the local order parameter. Our study may be helpful for the experiments related to the phase behavior in statistical physics, materials science and biophysical systems.展开更多
基金supported by the Science and Technology Development Fund,Macao SAR,China(File Nos.0090/2021/A2 and 0104/2024/AFJ)University of Macao(MYRG-GRG2024-00158-IAPME)+3 种基金the support from the National Natural Science Foundation of China(No.52275467)the support from the National Natural Science Foundation of China(No.52271037)Shaanxi Provincial Natural Science Fundamental Research Program,China(No.2023-JC-ZD-23)the Fundamental Research Funds for the Central Universities of China(No.D5000240307)
文摘We present a comprehensive investigation into the physical properties of intermetallic ErPd_(2)Si_(2),a compound renowned for its intriguing magnetic and electronic characteristics.We confirm the tetragonal crystal structure of ErPd_(2)Si_(2)within the I4/mmm space group.Notably,we observed anisotropic thermal expansion,with the lattice constant a expanding and c contracting between 15 and300 K.This behaviour is attributed to lattice vibrations and electronic contributions.Heat capacity measurements revealed three distinct temperature regimes:T_(1)~3.0 K,T_(N)~4.20 K,and T_(2)~15.31 K.These correspond to thedisappearance of spin-density waves,the onset of an incommensurate antiferromagnetic(AFM)structure,and the crystal-field splitting and/or the presence of short-range spin fluctuations,respectively.Remarkably,the AFM phase transition anomaly was observed exclusively in lowfield magnetization data(120 Oe)at T_(N).A high magnetic field(B=3 T)effectively suppressed this anomaly,likely due to spin-flop and spin-flip transitions.Furthermore,the extracted effective paramagnetic(PM)moments closely matched the expected theoretical value,suggesting a dominant magnetic contribution from localized 4f spins of Er.Additionally,significant differences in resistance(R)values at low temperatures under applied B indicated a magnetoresistance(MR)effect with a minimum value of-4.36%.Notably,the measured MR effect exhibited anisotropic behavior,where changes in the strength or direction of the applied B induced variations in the MR effect.A twofold symmetry of R was discerned at 3 and9 T,originating from the orientation of spin moments relative to the applied B.Intriguingly,above T_(N),shortrange spin fluctuations also displayed a preferred orientation along the c-axis due to single-ion anisotropy.Moreover,the R demonstrated a clear B dependence below30 K.The magnetic-field point where R transitions from linear B dependence to a stable state increased with temperature:~3 T(at 2 K),~4.5 T(at 4 K),and~6 T(at 10 K).Our study sheds light on the magnetic and electronic properties of ErPd_(2)Si_(2),offering valuable insights for potential applications in spintronics and quantum technologies.
基金supported by the National Natural Science Foundation of China(Grant Nos.11174169,11234007,and 51471093)
文摘We investigate the effect of interaction, temperature, and anisotropic parameter on the quantum phase transitions in an anisotropic square-octagon lattice with fermions under the framework of the single band Hubbard model through using the combination of cellular dynamical mean field theory and a continuous time Monte Carlo algorithm. The competition between interaction and temperature shows that with the increase of the anisotropic parameter, the critical on-site repulsive interaction for the metal-insulator transition increases for fixed temperature. The interaction-anisotropic parameter phase diagram reveals that with the decrease of temperature, the critical anisotropic parameter for the Mott transition will increase for fixed interaction cases.
基金supported by the National Natural Science Foundation of China(Grant Nos.61671004,61271012,81371549,81671683,and 11501415)the Natural Science Foundation of Tianjin City,China(Grant No.16JCYBJC28600)+4 种基金the WBE Liver Fibrosis Foundation of China(Grant No.CFHPC20131033)the Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YZ201410)the Foundation of Tianjin University of Technology and Education(Grant Nos.KJ11-22 and J10011060321)SRF for ROCS,SEMthe IHEP-CAS Scientific Research Foundation(Grant No.2013IHEPYJRC801)
文摘In-line phase-contrast computed tomography(IL-PC-CT) imaging is a new physical and biochemical imaging method.IL-PC-CT has advantages compared to absorption CT when imaging soft tissues. In practical applications, ring artifacts which will reduce the image quality are commonly encountered in IL-PC-CT, and numerous correction methods exist to either pre-process the sinogram or post-process the reconstructed image. In this study, we develop an IL-PC-CT reconstruction method based on anisotropic total variation(TV) minimization. Using this method, the ring artifacts are corrected during the reconstruction process. This method is compared with two methods: a sinogram preprocessing correction technique based on wavelet-FFT filter and a reconstruction method based on isotropic TV. The correction results show that the proposed method can reduce visible ring artifacts while preserving the liver section details for real liver section synchrotron data.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Government(NRF-2021R1A4A1030318,NRF-2022R1C1C1011386,NRF-2020M3H4A1A03084258)supported by the"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)
文摘The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.
文摘Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem,finite element equations of elastic wave propagation in two-phase anisotropic media are derived in this paper.Numerical solution of finite element equations is given.Finally,Properties of elastic wave propagation are observed and analyzed through FEM modeling.
基金Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFA1400900, 2021YFA0718300, and 2021YFA1402100)the National Natural Science Foundation of China (Grant Nos. 12174461, 12234012, 12334012, and 52327808)。
文摘We investigate the localization and topological properties of the Haldane model under the influence of random flux and Anderson disorder. Our localization analysis reveals that random flux induces a transition from insulating to metallic states, while Anderson localization only arises under the modulation of Anderson disorder. By employing real-space topological invariant methods, we demonstrates that the system undergoes topological phase transitions under different disorder manipulations, whereas random flux modulation uniquely induces topological Anderson insulator phases, with the potential to generate states with opposite Chern numbers. These findings highlight the distinct roles of disorder in shaping the interplay between topology and localization, providing insights into stabilizing topological states and designing robust topological quantum materials.
基金supported by Start-Up Grant From ShanghaiTech University,2021F0209-000-09Natural Science Foundation of Shanghai Municipality,23ZR1442000。
文摘Transcranial focused ultrasound(tFUS)is an emerging modality with strong potential for non-invasively treating brain disorders.However,the inhomogeneity and complex structure of the skull induce substantial phase aberrations and pressure attenuation;these can distort and shift the acoustic focus,thus hindering the efficiency of tFUS therapy.To achieve effective treatments,phased array transducers combined with aberration correction algorithms are commonly implemented.The present report aims to provide a comprehensive review of the current methods used for tFUS phase aberration correction.We first searched the PubMed and Web of Science databases for studies on phase aberration correction algorithms,identifying 54 articles for review.Relevant information,including the principles of algorithms and refocusing performances,were then extracted from the selected articles.The phase correction algorithms involved two main steps:acoustic field estimation and transmitted pulse adjustment.Our review identified key benchmarks for evaluating the effectiveness of these algorithms,each of which was used in at least three studies.These benchmarks included pressure and intensity,positioning error,focal region size,peak sidelobe ratio,and computational efficiency.Algorithm performances varied under different benchmarks,thus highlighting the importance of application-specific algorithm selection for achieving optimal tFUS therapy outcomes.The present review provides a thorough overview and comparison of various phase correction algorithms,and may offer valuable guidance to tFUS researchers when selecting appropriate phase correction algorithms for specific applications.
基金supported by the National Natural Science Foundation of China(Grant No.12274045)the National Natural Science Foundation of China(Grant No.12347101)the Program of the State Key Laboratory of Quantum Optics and Quantum Optics Devices(Grant No.KF202211).
文摘The anisotropic Dicke model offers a platform for the exploration of numerous quantum many-body phenomena.Here,we propose a Floquet-engineered scheme to realize such a system with strong dipole-dipole interactions using Rydberg atom arrays in an optical cavity.By periodically modulating the microwave fields,the anisotropic parameter can be precisely controlled and tuned between zero and one,enabling the system to transition smoothly from being purely dominated by rotating-wave terms to being exclusively governed by counter-rotating wave excitations.Leveraging this tunability,we demonstrate enhanced preparation of adiabatic superradiant and superradiant solid phases where symmetryprotected energy gaps suppress undesired level crossings.Our approach,combining Rydberg interactions and cavitymediated long-range correlations,establishes a versatile framework for the quantum simulation of light-matter interactions and the exploration of exotic many-body phases.
文摘A drawn high density polyethylene(HDPE)has been measured by Raman spectroscopy and differential scanning calorimetry (DSC). The crystalline structure of drawn HDPE is analysed by the Raman internal modes in terms of mass fractions of the crystalline orthorhombic phase, the liquid- like amorphous phase and the disordered anisotropic phase. The mass fractions depend on draw temperature T;and draw ratio R;. The fraction of disordered anisotropic amorphous phase changes very little with, the T;and increases with increasing R;. Sum of the mass fractions of crystalline orthorhombic phase and the disordered anisotropic phase increases linearly as the same slope as the crystallinity W;determined from DSC measurements with increasing T;or R;and it is higher than the W;for all the samples. The results show that the mass fraction of disordered anisotropic phase is partially devoted by the taut tie molecules (TTM s) in the amorphous state. The dependence of the disordered anisotropic phase on T;and R;supports the mechanism of plastic deformation of fibre structure.
基金Project supported by National Natural Science Foundation of China(51571064)National Basic Research Program of China(2014CB643701)Plan of National Key Research and Development(2016YFB0700903)
文摘In this work, the corrosion behavior of the surface parallel to the oriented c-axis(c‖) and perpendicular to c-axis(c⊥)in the(Ce_(0.15)Nd_(0.85))_(30)Fe_(bal)B dual main phase magnet was studied. With the addition of Ce,the volume fraction of RE-rich phase shown in the backscattered electron(BSE) images is basically approximate on the two surfaces. The free corrosion potential(E_(corr)) of the c‖ surface is more negative,which shows the worse corrosion resistance from the perspective of thermodynamics. While the reaction kinetics parameters with the smaller free corrosion current(i_(corr)) and the larger transfer resistance(R_(ct)) react the opposite conclusion in 3.5 wt% NaCl solution. Moreover, the c‖ surface performs smaller ions concentration of corrosion product and less damaged corrosion morphology compared to c⊥ surface after the free corrosion. The inconformity is not affected by the RE-rich phase, but by the anisotropy of the grains that the c‖ surface has larger density of the atoms and the lower ratio of(Nd, Ce)/Fe.
基金supported by the National Natural Science Foundation of China (No. 52175284, 52130509 and 52075543)the State Key Lab of Advanced Metmals and Materials (2021-ZD08)。
文摘In recent decades, the demand for lightweight and high specific strength materials brings about the development of magnesium matrix composites. Different from some traditional binary ceramic particles, such as SiC, Al_(2)O_(3), the novel ternary nano-layered M_(n+1)AX_(n)(MAX)phase carbide or nitride ceramics exhibit metal-like properties and self-lubricate capacity(where “M” is an early transition metal, “A” belongs to the group A element, “X” is C or/and N, and n = 1–3). Ti_(2)AlC, as the representative of the MAX phase, was interestingly introduced into the magnesium matrix. Layered Ti_(2)AlC MAX phased reinforced AZ91D magnesium composites manufactured through the stir casting exhibit sufficient deformation capacity due to unique deformation behaviors of MAX, namely delamination and the formation of kinking band. Further,the Ti_(2)AlC-AZ91D composites exhibit a distinctive characteristic in strengthening mechanism, damping mechanism and tribological capacity due to the other special properties of MAX phase, such as self-lubricated property. Accordingly, to give a comprehensive understanding, we overviewed the fabrication process, microstructural characterization, mechanical properties, damping property and tribological capacity on these composites. In order to understand the A-site effect in MAX phase on the microstructure, we introduced another representative Ti_(3)SiC_(2)MAX phase to explain the interfacial evolution. In addition, due to the high aspect ratio of MAX, MAX particles could be orientationally regulated in Mg matrix by plastic deformation such as hot extrusion. Herein, we discussed the anisotropic mechanical and physical properties of the textured composites produced by hot extrusion. Moreover, the potential applications and future development trends of MAX phases reinforced magnesium matrix composites were also given and prospected.
基金supported by National Natural Science Foundation of China(Grant Nos.52032004,51572104,51932003)National Key R&D Program of China(2016YFA0200400)+2 种基金National Major Project for Research on Scientific Instruments of China(2012YQ24026404)Fundamental Research Funds for the Central Universities(JLU)Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)。
文摘Ge2 Sb2 Te5 is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge_(2)Sb_(2)Te_(5) is available.This limits the optical switching states of traditional active displays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubichexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching performance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to introduce small interstitial impurities(like N)in Ge2 Sb2 Te5,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suitable impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb_(4) Te_(7),GeSb_(2) Te_(4),Ge_(3)Sb_(2) Te_(6),Sb_(2)Te_(3) will produce high optical contrast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.
基金financial support for this work contributed by the National Key Research and Development Program of China(Grants Nos.2016YFC0600101,2016YFC0600201 and 2016YFC0600302)the National Natural Science Foundation of China(Grants Nos.41522401 and 41474068)
文摘Seismic ray tracing in anisotropic media with irregular surface is crucial for the exploration of the fine crustal structure. Elliptically anisotropic medium is the type of anisotropic media with only four independent elastic parameters. Usually, this medium can be described by only the vertical phase velocity and the horizontal phase velocity for seismic wave propagation. Model parameteri- zation in this study is described by flexible triangular grids, which is beneficial for the description of irregular surface with high degree of approximation. Both the vertical and horizontal phase velocities are defined in the triangular grids, respectively, which are used for the description of phase velocity distribution everywhere in the model by linear interpolation. We develop a shooting ray tracing method of turning wave in the elliptically anisotropic media with irregular surface. Runge-Kutta method is applied to solve the partial differential equation of seismic ray in elliptically anisotropic media. Linearly modified method is used for adjusting emergent phase angles in the shooting scheme. Numerical tests demonstrate that ray paths coincide well with analytical trajectories in trans- versely homogeneous elliptically anisotropic media. Seis- mic ray tracing results in transversely inhomogeneous elliptically anisotropic media demonstrate that our method is effective for further first-arrival tomography in ellipti- cally anisotropic media with an irregular surface.
基金sponsored by the Helmholtz Association,the China Scholarship Council(CSC)partially funded by the German Research Foundation,DFG(Project No.MA 5039/4-1)。
文摘Tin(Sn)holds great promise as an anode material for next-generation lithium(Li)ion batteries but suffers from massive volume change and poor cycling performance.To clarify the dynamic chemical and microstructural evolution of Sn anode during lithiation and delithiation,synchrotron X-ray energydispersive diffraction and X-ray tomography are simultaneously employed during Li/Sn cell operation.The intermediate Li-Sn alloy phases during de/lithiation are identified,and their dynamic phase transformation is unraveled which is further correlated with the volume variation of the Sn at particle-and electrode-level.Moreover,we find that the Sn particle expansion/shrinkage induced particle displacement is anisotropic:the displacement perpendicular to the electrode surface(z-axis)is more pronounced compared to the directions(x-and y-axis)along the electrode surface.This anisotropic particle displacement leads to an anisotropic volume variation at the electrode level and eventually generates a net electrode expansion towards the separator after cycling,which could be one of the root causes of mechanical detachment and delamination of electrodes during long-term operation.The unraveled chemical evolution of Li-Sn and deep insights into the microstructural evolution of Sn anode provided here could guide future design and engineering of Sn and other alloy anodes for high energy density Li-and Na-ion batteries.
文摘The kinetics of internal boundaries relaxation: antiphase domain boundaries and interphase boundaries-in the conditions of high-temperature annealing and the structure transformations are investigated in homophase and heterophase systems. Homophase systems look like ordered binary alloy and include antiphase domain boundaries of various orientation. Clear components border on ordered alloy in heterophase systems and two processes take place simultaneously here-disordering of binary alloy and solution in ordered phase of clear component. Computer experiment is realized in the sphere of temperatures close to the temperature of order-disorder phase transition in the limits of two-dimensional model of atom diffusion at the vacant knots of crystal lattics.
基金financially supported by the National Natural Science Foundation of China (Nos. 51890871, 91833306, and 51573185)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB12020300)
文摘For poly(9,9-dioctylfluorene)(PFO),β phase (coplanar conformation with the intra-chain torsion angle of 165°) has a greater conjugation length and higher degree of order compared to those of α phase, which favors charge carrier transport. However, the highest content of β phase obtained so far is 45%. We propose to increase the content of β phase by promoting the solution aggregation of PFO molecules and extending film-forming time. For this purpose, 1,8-diiodooctane (DIO) is added to PFO o-xylene solution, which enhances the interaction of PFO chains and improves the planarity of PFO backbone, resulting in the formation of ordered aggregation. The aggregates act as nucleation centers to promote the formation of β phase. The content of β phase increases with increasing DIO concentration and reaches a platform of 39% as DIO is more than 4 vol%. Furthermore, the film is kept in a sealed environment with oxylene atmosphere for 3 h, thus the PFO molecules have enough time to diffuse to the crystallization front and achieve disorder-order transition. As a result, the crystallinity of PFO is improved significantly and the content of β phase increases to 52%, reaching the highest value reported so far.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572219,51872227,11204239,and 11447030)the Project of Natural Science Foundation of Shaanxi Province of China(Grant Nos.2015JM1018,2013JQ1018,15JK1759,and 15JK1714)the Science Foundation of Northwest University of China(Grant No.12NW06)
文摘Order–disorder phase transitions for CH3NH3PbCl3 are studied with density functional theory. Our calculations show that the disorder is manifested in two aspects in the cubic phase, namely, the disorder of orientation and rotation of organic groups. Organic groups of [CH3] and [NH3] in cubic crystals can easily rotate around its C3 axis. At the same time,[CH3NH3]^+ organic groups can also orient to different spatial directions due to the weak interactions between organic group and inorganic frame. Our results show that its possible phase transition path starts from the deviation of organic groups from the crystal c-axis. Its structural transition changes from disordered cubic phase to hydrogen-only disordered tetragonal structure in the process of decreasing symmetry. The disordered high temperature cubic phase can be expressed as a statistical average of substructures we rebuilt. The electrostatic repulsive force between adjacent organic groups triggers out the formation of low temperature phase on cooling.
文摘First-principles pseudopotential calculations are performed to investigate the phase transition and elastic properties of niobium nitrides (NbN). The lattice parameters a0 and c0/a0, elastic constants Cu, bulk modulus B0, and the pressure derivative of bulk modulus B0' are calculated. The results are in good agreement with numerous experimental and theoretical data. The enthalpy calculations predict that NbN undergoes phase transition from NaCl-type to NiAs-type structure at 13.4 GPa with a volume collapse of about 4.0% and from AsNi-type to CW-type structure at 26.5 GPa with a volume collapse of about 7.0%. Among the four types of structures, CW-type is the most stable structure. The elastic properties are analyzed on the basis of the calculated elastic constants. Isotropic wave velocities and anisotropic elasticity of NbN are studied in detail. The longitudinal and shear-wave velocities, Vr, Vs and V increase with increasing pressure, respectively. The Debye temperature OD increases monotonically with increasing pressure except for NiAs-type structure. Both the longitudinal velocity and the shear-wave velocity increase with pressure for wave vector along all the propagation directions, except for VTA([100]) and VTA[001]([110]) with NaCl structure and VTA[001]([100]) with the other three types of structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174052)the National Basic Research Program of China(Grant No.2011CB921203)the Open Fund from the State Key Laboratory of Precision Spectroscopy of East China Normal University
文摘The properties of the two-dimensional quantum walk with point, line, and circle disorders in phase are reported.Localization is observed in the two-dimensional quantum walk with certain phase disorder and specific initial coin states.We give an explanation of the localization behavior via the localized stationary states of the unitary operator of the walker+ coin system and the overlap between the initial state of the whole system and the localized stationary states.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos. 12075090, 11905086 and 12165015)the GDUPS (2016), and the Major Basic Research Project of Guangdong Province, China (Grant No. 2017KZDXM024)+2 种基金the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 2021BAB201015 and GJJ200820)Science and Technology Planning Project of Ganzhou City (Grant No. 202101095077)High-level Scientific Research Foundation for the Introduction of Talents of Jiangxi University of Science and Technology。
文摘We numerically study the phase behaviors of colloids with anisotropic diffusion in two dimensions. It is found that the diffusion anisotropy of colloidal particles plays an important role in the phase transitions. A strong diffusion anisotropy induces the large vibration of particles, subsequently, the system goes into a disordered state. In the presence of the strong-coupling, particles with weak diffusion anisotropy can freeze into hexagonal crystals. Thus, there exists a solid-liquid transition. With the degree of diffusion anisotropy increasing, the transition points are shifted to the strongercoupled region. A competition between the degree of diffusion anisotropy and coupling strength widens the transition region where the heterogeneous structures coexist, which results in a broad-peak probability distribution curve for the local order parameter. Our study may be helpful for the experiments related to the phase behavior in statistical physics, materials science and biophysical systems.