The need for simplified physical models representing frequency dependent soil impedances has been the motivation behind many researches throughout history. Generally, such models are generated to capture impedance fun...The need for simplified physical models representing frequency dependent soil impedances has been the motivation behind many researches throughout history. Generally, such models are generated to capture impedance functions in a wide range of excitation frequencies, which leads to relatively complex models. That is while there is just a limited range of frequencies that really influence the response of the structure. Here, a new methodology based on the response-matching concept is proposed, which can lead to the development of simpler discrete models. The idea is then used to upgrade an existing simple model of surface foundations to the case of embedded foundations. The applicability of the model in both frequency domain and time domain analyses of soil-structure systems with embedded foundations is discussed. Moreover, the accuracy of the results is compared with another existing discrete model for embedded foundations.展开更多
Coke is an important medium for connecting reaction and regeneration of the methanol to propylene process on the ZSM5 catalyst.Coke grows in the meso and macro pores,it gradually worsens the diffusion inside the catal...Coke is an important medium for connecting reaction and regeneration of the methanol to propylene process on the ZSM5 catalyst.Coke grows in the meso and macro pores,it gradually worsens the diffusion inside the catalyst particle.Furthermore,pore plugging is inevitable which causes the deactivation of ZSM5 catalyst.However,current continuum model cannot reflect the changes in pore structure with clear physical concepts.A discrete model that is verified by the carbon deposition experiments is introduced to indicate the behavior of pore plugging effects.Results show that the pore plugging has a significant effect on the performance of the catalyst.The time varying profile of effectiveness factor is obtained,indicating a regular reduction with the increase of the pore plugging effect.Spatial distributions of pore size that would significantly enhance the plugging effect are also identified.展开更多
By using a new fixed point theorem, sufficientconditions are obtained for the existence of a positivealmost-periodic solution for an discrete model of hematopoiesis with almost-periodic coefficients. Its attractivity ...By using a new fixed point theorem, sufficientconditions are obtained for the existence of a positivealmost-periodic solution for an discrete model of hematopoiesis with almost-periodic coefficients. Its attractivity and oscillation are investigated.展开更多
The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fractur...The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.展开更多
The present paper investigates the theoretical analysis of the tuberculosis(TB)model in the discrete-time case.The model is parameterized by the TB infection cases in the Pakistani province of Khyber Pakhtunkhwa betwe...The present paper investigates the theoretical analysis of the tuberculosis(TB)model in the discrete-time case.The model is parameterized by the TB infection cases in the Pakistani province of Khyber Pakhtunkhwa between 2002 and 2017.The model is parameterized and the basic reproduction number is obtained and it is found R_(0)=1:5853.The stability analysis for the model is presented and it is shown that the discrete-time tuberculosis model is stable at the disease-free equilibrium whenever R_(0)<1 and further we establish the results for the endemic equilibria and prove that the model is globally asymptotically stable if R_(0)>1.A discrete fractional model in the sense of Caputo derivative is presented.The numerical results of the model with various parameters and their effect on the model are presented.A comparison of discrete-time method with continuous-time model is presented graphically.A discrete fractional approach is compared with the existing method in literature and some reasonable results are achieved.Finally,a summary of results and conclusion are presented.展开更多
The discrete-time network model of two neurons with function f(u) ={1,u∈[0,σ] 0,U∈[0,σ]is considered. We obtain some sufficient conditions that every solution of system is convergent or periodic.
Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensiona...Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensional(3D)benchmark model of a laboratory experiment on graywacke to examine the dynamic hydraulic fracturing process under a polyaxial stress state.In the numerical model,injection pressures after breakdown(postbreakdown)are varied to study the impact on fracture growth.The fluid pressure front and crack front are identified in the numerical model to analyze the dynamic relationship between fluid diffusion and fracture propagation.Following the hydraulic fracturing test,the polyaxial stresses are rotated to investigate the influence of the stress field rotation on the fracture slip behavior and permeability.The results show that fracture propagation guides fluid diffusion under a high postbreakdown injection pressure.The crack front runs ahead of the fluid pressure front.Under a low postbreakdown injection pressure,the fluid pressure front gradually reaches the crack front,and fluid diffusion is the main driving factor of fracture propagation.Under polyaxial stress conditions,fluid injection not only opens tensile fractures but also induces hydroshearing.When the polyaxial stress is rotated,the fracture slip direction of a fully extended fracture is consistent with the shear stress direction.The fracture slip direction of a partly extended fracture is influenced by the increase in shear stress.Normal stress affects the permeability evolution by changing the average mechanical aperture.Shear stress can induce shearing and sliding on the fracture plane,thereby increasing permeability.展开更多
In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics a...In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics are obtained from statistical data,while the trip mode split data is collected through a trip survey in Bengbu.In addition,the discrete choice model is adopted to build the functional relationship between the mode choice and the travelers' personal characteristics,as well as family characteristics and trip characteristics.The model shows that the relationship between the mode split and the personal,as well as family and trip characteristics is stable and changes little as the time changes.Deduced by the discrete model,the mode split result is relatively accurate and can be feasibly used for trip mode structure forecasts.Furthermore,the proposed model can also contribute to find the key influencing factors on trip mode choice,and restructure or optimize the urban trip mode structure.展开更多
The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can repr...The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.展开更多
We consider a discrete model with interaction between the budworm and its predator in aeircular region. The number and properties of steady solutions, and the asymptotic behaviour ofunsteady solution are discussed.
To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fract...To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.展开更多
In work, it is constructed a discrete mathematical model of motion of a perfect fluid. The fluid is represented as an ensemble of identical so-called liquid particles, which are in the form of extended geometrical obj...In work, it is constructed a discrete mathematical model of motion of a perfect fluid. The fluid is represented as an ensemble of identical so-called liquid particles, which are in the form of extended geometrical objects: circles and spheres for two-dimensional and three-dimensional cases, respectively. The mechanism of interaction between the liquid particles on a binary level and on the level of the n-cluster is formulated. This mechanism has previously been found by the author as part of the mathematical modeling of turbulent fluid motion. In the turbulence model was derived and investigated the potential interaction of pairs of liquid particles, which contained a singularity of the branch point. Exactly, this is possible to build in this article discrete stochastic-deterministic model of an ideal fluid. The results of computational experiment to simulate various kinds of flows in two-dimensional and three-dimensional ensembles of liquid particles are presented. Modeling was carried out in the areas of quadratic or cubic form. On boundary of a region satisfies the condition of elastic reflection liquid particles. The flows with spontaneous separation of particles in a region, various kinds of eddy streams, with the quite unexpected statistical properties of an ensemble of particles characteristic for the Fermi-Pasta-Ulam effect were found. We build and study the flow in which the velocity of the particles is calibrated. It was possible using the appropriate flows of liquid particles of the ensemble to demonstrate the possibility to reproduce any prescribed image by manipulating the parameters of the interaction. Calculations of the flows were performed with using MATLAB software package according to the algorithms presented in this article.展开更多
Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research...Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research on the size efect and mechanical parameters of shale.Analytical solutions of fctitious joints in transversely isotropic media were derived,which made it possible for the proposed numerical model to simulate the bedding and natural fractures in shale masses.The results indicate that there are two main factors infuencing the representative elementary volume(REV)size of a shale mass.The frst and most decisive factor is the presence of natural fractures in the block itself.The second is the anisotropy ratio:the greater the anisotropy is,the larger the REV.The bedding angle has little infuence on the REV size,whereas it has a certain infuence on the mechanical parameters of the rock mass.When the bedding angle approaches the average orientation of the natural fractures,the mechanical parameters of the shale blocks decrease greatly.The REV representing the mechanical properties of the Carboniferous shale masses in the eastern Qaidam Basin were comprehensively identifed by considering the infuence of bedding and natural fractures.When the numerical model size is larger than the REV,the fractured rock mass discontinuities can be transformed into equivalent continuities,which provides a method for simulating shale with natural fractures and bedding to analyze the stability of a borehole wall in shale.展开更多
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th...This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.展开更多
Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft...Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work.展开更多
A one-dimensional discrete Boltzmann model for detonation simulation is presented. Instead of numerical solving Navier-Stokes equations, this model obtains the information of flow field through numerical solving speci...A one-dimensional discrete Boltzmann model for detonation simulation is presented. Instead of numerical solving Navier-Stokes equations, this model obtains the information of flow field through numerical solving specially discretized Boltzmann equation. Several classical benchmarks including Sod shock wave tube, Colella explosion problem,and one-dimensional self-sustainable stable detonation are simulated to validate the new model. Based on the new model,the influence of negative temperature coefficient of reaction rate on detonation is further investigated. It is found that an abnormal detonation with two wave heads periodically appears under negative temperature coefficient condition.The causes of the abnormal detonation are analyzed. One typical cycle of the periodic abnormal detonation and its development process are discussed.展开更多
The particle morphological properties,such as sphericity,concavity and convexity,of a granular assembly significantly affect its macroscopic and microscopic compressive behaviors under isotropic loading condition.Howe...The particle morphological properties,such as sphericity,concavity and convexity,of a granular assembly significantly affect its macroscopic and microscopic compressive behaviors under isotropic loading condition.However,limited studies on investigating the microscopic behavior of the granular assembly with real particle shapes under isotropic compression were reported.In this study,X-ray computed tomography(mCT)and discrete element modeling(DEM)were utilized to investigate isotropic compression behavior of the granular assembly with regard to the particle morphological properties,such as particle sphericity,concavity and interparticle frictions.The mCT was first used to extract the particle morphological parameters and then the DEM was utilized to numerically investigate the influences of the particle morphological properties on the isotropic compression behavior.The image reconstruction from mCT images indicated that the presented particle quantification algorithm was robust,and the presented microscopic analysis via the DEM simulation demonstrated that the particle surface concavity significantly affected the isotropic compression behavior.The observations of the particle connectivity and local void ratio distribution also provided insights into the granular assembly under isotropic compression.Results found that the particle concavity and interparticle friction influenced the most of the isotropic compression behavior of the granular assemblies.展开更多
The aim of this paper is to present a discrete event model-based approach to simulate train movement with the con- sidered energy-saving factor. We conduct extensive case studies to show the dynamic characteristics of...The aim of this paper is to present a discrete event model-based approach to simulate train movement with the con- sidered energy-saving factor. We conduct extensive case studies to show the dynamic characteristics of the traffic flow and demonstrate the effectiveness of the proposed approach. The simulation results indicate that the proposed discrete event model-based simulation approach is suitable for characterizing the movements of a group of trains on a single railway line with less iterations and CPU time. Additionally, some other qualitative and quantitative characteristics are investigated. In particular, because of the cumulative influence from the previous trains, the following trains should be accelerated or braked frequently to control the headway distance, leading to more energy consumption.展开更多
The acoustic emission (AE) features in rock fracture are simulated numerically with discrete element model (DEM). The specimen is constructed by using spherical particles bonded via the parallel bond model. As a r...The acoustic emission (AE) features in rock fracture are simulated numerically with discrete element model (DEM). The specimen is constructed by using spherical particles bonded via the parallel bond model. As a result of the heterogeneity in rock specimen, the failure criterion of bonded particle is coupled by the shear and tensile strengths, which follow a normal probability distribution. The Kaiser effect is simulated in the fracture process, for a cubic rock specimen under uniaxial compression with a constant rate. The AE number is estimated with breakages of bonded particles using a pair of parameters, in the temporal and spatial scale, respectively. It is found that the AE numbers and the elastic energy release curves coincide. The range for the Kaiser effect from the AE number and the elastic energy release are the same. Furthermore, the frequency-magnitude relation of the AE number shows that the value of B determined with DEM is consistent with the experimental data.展开更多
Several software reliability growth models (SRGM) have been developed to monitor the reliability growth during the testing phase of software development. In most of the existing research available in the literatures...Several software reliability growth models (SRGM) have been developed to monitor the reliability growth during the testing phase of software development. In most of the existing research available in the literatures, it is considered that a similar testing effort is required on each debugging effort. However, in practice, different types of faults may require different amounts of testing efforts for their detection and removal. Consequently, faults are classified into three categories on the basis of severity: simple, hard and complex. This categorization may be extended to r type of faults on the basis of severity. Although some existing research in the literatures has incorporated this concept that fault removal rate (FRR) is different for different types of faults, they assume that the FRR remains constant during the overall testing period. On the contrary, it has been observed that as testing progresses, FRR changes due to changing testing strategy, skill, environment and personnel resources. In this paper, a general discrete SRGM is proposed for errors of different severity in software systems using the change-point concept. Then, the models are formulated for two particular environments. The models were validated on two real-life data sets. The results show better fit and wider applicability of the proposed models as to different types of failure datasets.展开更多
文摘The need for simplified physical models representing frequency dependent soil impedances has been the motivation behind many researches throughout history. Generally, such models are generated to capture impedance functions in a wide range of excitation frequencies, which leads to relatively complex models. That is while there is just a limited range of frequencies that really influence the response of the structure. Here, a new methodology based on the response-matching concept is proposed, which can lead to the development of simpler discrete models. The idea is then used to upgrade an existing simple model of surface foundations to the case of embedded foundations. The applicability of the model in both frequency domain and time domain analyses of soil-structure systems with embedded foundations is discussed. Moreover, the accuracy of the results is compared with another existing discrete model for embedded foundations.
基金the Project of National Natural Science Foundation of China(21822809&21978256)the National Science Fund for Distinguished Young(21525627)+1 种基金the Fundamental Research Funds for the Central Universi-ties(2019XZZX004-03)Ningxia Collaborative Innovation Center for Value Upgrading of Coal-based Synthetic Resin(2017DC57)are gratefully acknowledged.Dr.Zuwei Liao express their dedication to Prof.Xingtian Shu on the occasion of his 80th birthday.
文摘Coke is an important medium for connecting reaction and regeneration of the methanol to propylene process on the ZSM5 catalyst.Coke grows in the meso and macro pores,it gradually worsens the diffusion inside the catalyst particle.Furthermore,pore plugging is inevitable which causes the deactivation of ZSM5 catalyst.However,current continuum model cannot reflect the changes in pore structure with clear physical concepts.A discrete model that is verified by the carbon deposition experiments is introduced to indicate the behavior of pore plugging effects.Results show that the pore plugging has a significant effect on the performance of the catalyst.The time varying profile of effectiveness factor is obtained,indicating a regular reduction with the increase of the pore plugging effect.Spatial distributions of pore size that would significantly enhance the plugging effect are also identified.
基金Supported by the NNSF of China(10541067)Supported by the NSF of Guangdong Province(10151063101000003)Supported by the Research Fund for the Doctoral Program of Higher Education(20094407110001)
文摘By using a new fixed point theorem, sufficientconditions are obtained for the existence of a positivealmost-periodic solution for an discrete model of hematopoiesis with almost-periodic coefficients. Its attractivity and oscillation are investigated.
文摘The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.
文摘The present paper investigates the theoretical analysis of the tuberculosis(TB)model in the discrete-time case.The model is parameterized by the TB infection cases in the Pakistani province of Khyber Pakhtunkhwa between 2002 and 2017.The model is parameterized and the basic reproduction number is obtained and it is found R_(0)=1:5853.The stability analysis for the model is presented and it is shown that the discrete-time tuberculosis model is stable at the disease-free equilibrium whenever R_(0)<1 and further we establish the results for the endemic equilibria and prove that the model is globally asymptotically stable if R_(0)>1.A discrete fractional model in the sense of Caputo derivative is presented.The numerical results of the model with various parameters and their effect on the model are presented.A comparison of discrete-time method with continuous-time model is presented graphically.A discrete fractional approach is compared with the existing method in literature and some reasonable results are achieved.Finally,a summary of results and conclusion are presented.
基金Supported by the NNSF(10071016)Supported by the Science Foundation of Jimei University(ZQ2006033)
文摘The discrete-time network model of two neurons with function f(u) ={1,u∈[0,σ] 0,U∈[0,σ]is considered. We obtain some sufficient conditions that every solution of system is convergent or periodic.
基金supported by the Knowledge Innovation Program of Wuhan-Basic Research (Grant No.2022010801010159)support from the Helmholtz Association's Initiative and Networking Fund for the Helmholtz Young Investigator Group ARES (Contract number VH-NG-1516)supported by the Swedish Radiation Safety Authority (Project SSM2020-2758).
文摘Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensional(3D)benchmark model of a laboratory experiment on graywacke to examine the dynamic hydraulic fracturing process under a polyaxial stress state.In the numerical model,injection pressures after breakdown(postbreakdown)are varied to study the impact on fracture growth.The fluid pressure front and crack front are identified in the numerical model to analyze the dynamic relationship between fluid diffusion and fracture propagation.Following the hydraulic fracturing test,the polyaxial stresses are rotated to investigate the influence of the stress field rotation on the fracture slip behavior and permeability.The results show that fracture propagation guides fluid diffusion under a high postbreakdown injection pressure.The crack front runs ahead of the fluid pressure front.Under a low postbreakdown injection pressure,the fluid pressure front gradually reaches the crack front,and fluid diffusion is the main driving factor of fracture propagation.Under polyaxial stress conditions,fluid injection not only opens tensile fractures but also induces hydroshearing.When the polyaxial stress is rotated,the fracture slip direction of a fully extended fracture is consistent with the shear stress direction.The fracture slip direction of a partly extended fracture is influenced by the increase in shear stress.Normal stress affects the permeability evolution by changing the average mechanical aperture.Shear stress can induce shearing and sliding on the fracture plane,thereby increasing permeability.
基金The National Natural Science Foundation of China (No.50738001,51078086)
文摘In order to find the main factors that influence the urban traffic structure,a relational model between the travelers' characteristics and the trip mode choice is built.The data of urban residents' characteristics are obtained from statistical data,while the trip mode split data is collected through a trip survey in Bengbu.In addition,the discrete choice model is adopted to build the functional relationship between the mode choice and the travelers' personal characteristics,as well as family characteristics and trip characteristics.The model shows that the relationship between the mode split and the personal,as well as family and trip characteristics is stable and changes little as the time changes.Deduced by the discrete model,the mode split result is relatively accurate and can be feasibly used for trip mode structure forecasts.Furthermore,the proposed model can also contribute to find the key influencing factors on trip mode choice,and restructure or optimize the urban trip mode structure.
基金the support of Texas A&M University at Qatar for the 2022 Sixth Cycle Seed Grant Project。
文摘The main objective of this paper is to investigate the influence of inertia of nonlinear springs on the dispersion behavior of discrete monoatomic chains with lumped and distributed masses.The developed model can represent the wave propagation problem in a non-homogeneous material consisting of heavy inclusions embedded in a matrix.The inclusions are idealized by lumped masses,and the matrix between adjacent inclusions is modeled by a nonlinear spring with distributed masses.Additionally,the model is capable of depicting the wave propagation in bi-material bars,wherein the first material is represented by a rigid particle and the second one is represented by a nonlinear spring with distributed masses.The discrete model of the nonlinear monoatomic chain with lumped and distributed masses is first considered,and a closed-form expression of the dispersion relation is obtained by the second-order Lindstedt-Poincare method(LPM).Next,a continuum model for the nonlinear monoatomic chain is derived directly from its discrete lattice model by a suitable continualization technique.The subsequent use of the second-order method of multiple scales(MMS)facilitates the derivation of the corresponding nonlinear dispersion relation in a closed form.The novelties of the present study consist of(i)considering the inertia of nonlinear springs on the dispersion behavior of the discrete mass-spring chains;(ii)developing the second-order LPM for the wave propagation in the discrete chains;and(iii)deriving a continuum model for the nonlinear monoatomic chains with lumped and distributed masses.Finally,a parametric study is conducted to examine the effects of the design parameters and the distributed spring mass on the nonlinear dispersion relations and phase velocities obtained from both the discrete and continuum models.These parameters include the ratio of the spring mass to the lumped mass,the nonlinear stiffness coefficient of the spring,and the wave amplitude.
文摘We consider a discrete model with interaction between the budworm and its predator in aeircular region. The number and properties of steady solutions, and the asymptotic behaviour ofunsteady solution are discussed.
基金The National Natural Science Foundation of China(No.51108081)
文摘To investigate migration and evolution rules of coarse aggregates in the static compaction process, an algorithm of generating digital coarse aggregates that can reflect real morphology( such as shape, size and fracture surface) of aggregate particles, is represented by polyhedral particles based on the discrete element method( DEM). A digital specimen comprised of aggregates and air voids is developed. In addition,a static compaction model consisting of a digital specimen and three plates is constructed and a series of evaluation indices such as mean contact force σMCF, wall stress in direction of zcoordinate σWSZZ, porosity and coordination numbers are presented to investigate the motion rules of coarse aggregates at different compaction displacements of 7. 5, 15 and 30 mm. The three-dimensional static compaction model is also verified with laboratory measurements. The results indicate that the compaction displacements are positively related to σMCF and σWSZZ, which increase gradually with the increase in iterative steps. When the compaction proceeds, the digital specimen porosity decreases, but the coordination number increases. The variation ranges of these four indices are different at different compaction displacements. This study provides a method to analyze the compaction mechanism of particle materials such as asphalt mixture and graded broken stone.
文摘In work, it is constructed a discrete mathematical model of motion of a perfect fluid. The fluid is represented as an ensemble of identical so-called liquid particles, which are in the form of extended geometrical objects: circles and spheres for two-dimensional and three-dimensional cases, respectively. The mechanism of interaction between the liquid particles on a binary level and on the level of the n-cluster is formulated. This mechanism has previously been found by the author as part of the mathematical modeling of turbulent fluid motion. In the turbulence model was derived and investigated the potential interaction of pairs of liquid particles, which contained a singularity of the branch point. Exactly, this is possible to build in this article discrete stochastic-deterministic model of an ideal fluid. The results of computational experiment to simulate various kinds of flows in two-dimensional and three-dimensional ensembles of liquid particles are presented. Modeling was carried out in the areas of quadratic or cubic form. On boundary of a region satisfies the condition of elastic reflection liquid particles. The flows with spontaneous separation of particles in a region, various kinds of eddy streams, with the quite unexpected statistical properties of an ensemble of particles characteristic for the Fermi-Pasta-Ulam effect were found. We build and study the flow in which the velocity of the particles is calibrated. It was possible using the appropriate flows of liquid particles of the ensemble to demonstrate the possibility to reproduce any prescribed image by manipulating the parameters of the interaction. Calculations of the flows were performed with using MATLAB software package according to the algorithms presented in this article.
基金support of the National Natural Science Foundation of China(51604275)the Key Laboratory of Urban Under Ground Engineering of Ministry of Education(TUE2018-01)+1 种基金Yue Qi Young Scholar Project of China University of Mining&Technology,Beijingthe Fundamental Research Funds for the Central Universities(2016QL02).
文摘Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research on the size efect and mechanical parameters of shale.Analytical solutions of fctitious joints in transversely isotropic media were derived,which made it possible for the proposed numerical model to simulate the bedding and natural fractures in shale masses.The results indicate that there are two main factors infuencing the representative elementary volume(REV)size of a shale mass.The frst and most decisive factor is the presence of natural fractures in the block itself.The second is the anisotropy ratio:the greater the anisotropy is,the larger the REV.The bedding angle has little infuence on the REV size,whereas it has a certain infuence on the mechanical parameters of the rock mass.When the bedding angle approaches the average orientation of the natural fractures,the mechanical parameters of the shale blocks decrease greatly.The REV representing the mechanical properties of the Carboniferous shale masses in the eastern Qaidam Basin were comprehensively identifed by considering the infuence of bedding and natural fractures.When the numerical model size is larger than the REV,the fractured rock mass discontinuities can be transformed into equivalent continuities,which provides a method for simulating shale with natural fractures and bedding to analyze the stability of a borehole wall in shale.
基金supported by the National Natural Science Foundation of China(7090104171171113)the Aeronautical Science Foundation of China(2014ZG52077)
文摘This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model.
基金Special Fund of Marine Commonweal Industry under contact Nos 201105016 and 201205007supported by National Marine Environment Forecasting Centrethe National Natural Science Foundation of China under contact No.41176012
文摘Considering the discontinuous characteristics of sea ice on various scales,a modified discrete element model(DEM) for sea ice dynamics is developed based on the granular material rheology.In this modified DEM,a soft sea ice particle element is introduced as a self-adjustive particle size function.Each ice particle can be treated as an assembly of ice floes,with its concentration and thickness changing to variable sizes under the conservation of mass.In this model,the contact forces among ice particles are calculated using a viscous-elastic-plastic model,while the maximum shear forces are described with the Mohr-Coulomb friction law.With this modified DEM,the ice flow dynamics is simulated under the drags of wind and current in a channel of various widths.The thicknesses,concentrations and velocities of ice particles are obtained,and then reasonable dynamic process is analyzed.The sea ice dynamic process is also simulated in a vortex wind field.Taking the influence of thermodynamics into account,this modified DEM will be improved in the future work.
基金Supported by National Natural Science Foundation of China under Grant Nos.11772064,and 11502117CAEP Foundation under Grant No.CX2019033+1 种基金the opening project of State Key Laboratory of Explosion Science and Technology(Beijing Institute of Technology)Science Challenge Project under Grant No.JCKY2016212A501
文摘A one-dimensional discrete Boltzmann model for detonation simulation is presented. Instead of numerical solving Navier-Stokes equations, this model obtains the information of flow field through numerical solving specially discretized Boltzmann equation. Several classical benchmarks including Sod shock wave tube, Colella explosion problem,and one-dimensional self-sustainable stable detonation are simulated to validate the new model. Based on the new model,the influence of negative temperature coefficient of reaction rate on detonation is further investigated. It is found that an abnormal detonation with two wave heads periodically appears under negative temperature coefficient condition.The causes of the abnormal detonation are analyzed. One typical cycle of the periodic abnormal detonation and its development process are discussed.
基金the Universidad Nacional de San Agustín(UNSA)through the joint Center for Mining Sustainability with the Colorado School of Mines is highly acknowledged.
文摘The particle morphological properties,such as sphericity,concavity and convexity,of a granular assembly significantly affect its macroscopic and microscopic compressive behaviors under isotropic loading condition.However,limited studies on investigating the microscopic behavior of the granular assembly with real particle shapes under isotropic compression were reported.In this study,X-ray computed tomography(mCT)and discrete element modeling(DEM)were utilized to investigate isotropic compression behavior of the granular assembly with regard to the particle morphological properties,such as particle sphericity,concavity and interparticle frictions.The mCT was first used to extract the particle morphological parameters and then the DEM was utilized to numerically investigate the influences of the particle morphological properties on the isotropic compression behavior.The image reconstruction from mCT images indicated that the presented particle quantification algorithm was robust,and the presented microscopic analysis via the DEM simulation demonstrated that the particle surface concavity significantly affected the isotropic compression behavior.The observations of the particle connectivity and local void ratio distribution also provided insights into the granular assembly under isotropic compression.Results found that the particle concavity and interparticle friction influenced the most of the isotropic compression behavior of the granular assemblies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.71271020 and 71271022)the Program for New Century Excellent Talents in University(Grant No.NCET-10-0218)
文摘The aim of this paper is to present a discrete event model-based approach to simulate train movement with the con- sidered energy-saving factor. We conduct extensive case studies to show the dynamic characteristics of the traffic flow and demonstrate the effectiveness of the proposed approach. The simulation results indicate that the proposed discrete event model-based simulation approach is suitable for characterizing the movements of a group of trains on a single railway line with less iterations and CPU time. Additionally, some other qualitative and quantitative characteristics are investigated. In particular, because of the cumulative influence from the previous trains, the following trains should be accelerated or braked frequently to control the headway distance, leading to more energy consumption.
基金supported by the National Basic Research Program of China (2010CB731502)
文摘The acoustic emission (AE) features in rock fracture are simulated numerically with discrete element model (DEM). The specimen is constructed by using spherical particles bonded via the parallel bond model. As a result of the heterogeneity in rock specimen, the failure criterion of bonded particle is coupled by the shear and tensile strengths, which follow a normal probability distribution. The Kaiser effect is simulated in the fracture process, for a cubic rock specimen under uniaxial compression with a constant rate. The AE number is estimated with breakages of bonded particles using a pair of parameters, in the temporal and spatial scale, respectively. It is found that the AE numbers and the elastic energy release curves coincide. The range for the Kaiser effect from the AE number and the elastic energy release are the same. Furthermore, the frequency-magnitude relation of the AE number shows that the value of B determined with DEM is consistent with the experimental data.
文摘Several software reliability growth models (SRGM) have been developed to monitor the reliability growth during the testing phase of software development. In most of the existing research available in the literatures, it is considered that a similar testing effort is required on each debugging effort. However, in practice, different types of faults may require different amounts of testing efforts for their detection and removal. Consequently, faults are classified into three categories on the basis of severity: simple, hard and complex. This categorization may be extended to r type of faults on the basis of severity. Although some existing research in the literatures has incorporated this concept that fault removal rate (FRR) is different for different types of faults, they assume that the FRR remains constant during the overall testing period. On the contrary, it has been observed that as testing progresses, FRR changes due to changing testing strategy, skill, environment and personnel resources. In this paper, a general discrete SRGM is proposed for errors of different severity in software systems using the change-point concept. Then, the models are formulated for two particular environments. The models were validated on two real-life data sets. The results show better fit and wider applicability of the proposed models as to different types of failure datasets.