期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Electrochemical behavior and discharge performance of as-rolled precipitate-free Mg-Sn alloy as anode for Mg-air batteries 被引量:2
1
作者 Xu LI Wei-li CHENG +7 位作者 Jian LI Fei-er SHANGGUAN Hui YU Li-fei WANG Hang LI Hong-xia WANG Jin-hui WANG Hua HOU 《Transactions of Nonferrous Metals Society of China》 2025年第3期832-848,共17页
A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anod... A novel precipitate-free Mg-0.1Sn anode with a homogeneous equal-axis grain structure was developed and rolled successfully at 573 K.Electrochemical test results indicate that the Mg-0.1Sn alloy exhibits enhanced anode dissolution kinetics.A Mg-air battery prepared using this anode exhibits a cell voltage of 1.626 V at 0.5 mA/cm^(2),reasonable anodic efficiency of 58.17%,and good specific energy of 1730.96 mW·h/g at 10 mA/cm^(2).This performance is attributed to the effective reactive anode surface,the suppressed chunk effect,and weak self-corrosion owing to the homogeneous basal texture. 展开更多
关键词 Mg-air battery Mg-Sn anode grain structure electrochemical behavior discharge performance
在线阅读 下载PDF
Improving the Intermittent Discharge Performance of Mg–Air Battery by Using Oxyanion Corrosion Inhibitor as Electrolyte Additive 被引量:9
2
作者 Yan-Chun Zhao Guang-Sheng Huang +3 位作者 Gui-lin Gong Ting-Zhuang Han Da-Biao Xia Fu-Sheng Pan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2016年第11期1019-1024,共6页
A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that... A widely used oxyanion corrosion inhibitor(Li2CrO4) was used as electrolyte additive(3.5 wt% Na Cl solution was used as electrolyte solution) for Mg–air battery. The potentiodynamic polarization tests showed that the presence of 0.1 wt% Li2CrO4in the Na Cl electrolyte reduced enormously the corrosion current density of the tested AZ31 Mg alloys.According to the intermittent discharge tests, the use of 0.1 wt% Li2CrO4 as electrolyte additive increased the anode efficiency of the Mg–air battery by 28.4%. The addition of 0.1 wt% Li2CrO4reduced the anode self-corrosion rate of the battery in the intermittent stage effectively. The product film after discharge was observed by scanning electron microscope, and the Mg–air battery containing 0.1 wt% Li2CrO4has a loose product film, which is beneficial to its discharge performance. So using Li2CrO4 as electrolyte additive could improve the intermittent discharge performance of Mg–air battery. And the use of oxyanion corrosion inhibitor as electrolyte additive may be an excellent way to improve the intermittent discharge performance of Mg–air battery. 展开更多
关键词 Mg alloys CORROSION Mg-air battery Intermittent discharge performance Anode efficiency
原文传递
Effect of yttrium and calcium additions on electrochemical behaviors and discharge performance of AZ80 anodes for Mg-air battery 被引量:5
3
作者 Yu-wen-xi ZHANG Lu HAN +4 位作者 Lin-bao REN Ling-ling FAN Yang-yang GUO Ming-yang ZHOU Gao-feng QUAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2510-2526,共17页
The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The resu... The effects of yttrium(Y)and yttrium+calcium(Y+Ca)additions on the electrochemical properties and discharge performance of the as-extruded Mg−8Al−0.5Zn−0.2Mn(AZ80)anodes for Mg−air batteries were investigated.The results show that the addition of 0.2 wt.%Y increased the corrosion resistance and discharge activity of AZ80 anode.This was attributed to the fine and sphericalβ-Mg_17)Al_(12) phases dispersing evenly in AZ80+0.2Y alloy,which suppressed the localized corrosion and severe“chunk effect”,and facilitated the rapid activation ofα-Mg.Combinative addition of 0.2 wt.%Y and 0.15 wt.%Ca generated grain refinement and a reduction of theβ-Mg_17)Al_(12) phase,resulting in a further enhancement in discharge voltage.However,the incorporation of Ca in Mg_17)Al_(12) and Al_(2)Y compounds compromised the corrosion resistance and anodic efficiency of AZ80+0.2Y+0.15Ca anode.Consequently,AZ80+0.2Y anode exhibited excellent overall discharge performance,with the peak discharge capacity and anodic efficiency of 1525 mA·h·g^(−1) and 67%at 80 mA/cm^(2),13%and 14%higher than those of AZ80 anode,respectively. 展开更多
关键词 Mg-air battery Mg-Al-Zn anode discharge performance electrochemical behavior
在线阅读 下载PDF
Anticorrosion and discharge performance of calcium and neodymium co-doped AZ61 alloy anodes for Mg-air batteries 被引量:2
4
作者 Baosheng Liu Ang Gao +8 位作者 Zhechao Zhang Muhun He Ben Bin Xu Xuetao Shi Pengpeng Wu Sijie Guo Mohammed A.Amin Eman Ramadan Elsharkawy Zhanhu Guo 《Journal of Materials Science & Technology》 CSCD 2024年第26期132-145,共14页
Calcium(Ca)and neodymium(Nd)were introduced in the AZ61 alloy as alloying elements.The microstructure,corrosion behavior,and discharge properties of AZ61-1Nd-xCa(x=0,0.5 wt.%,1 wt.%,2 wt.%)alloys as anodes for Mg-air ... Calcium(Ca)and neodymium(Nd)were introduced in the AZ61 alloy as alloying elements.The microstructure,corrosion behavior,and discharge properties of AZ61-1Nd-xCa(x=0,0.5 wt.%,1 wt.%,2 wt.%)alloys as anodes for Mg-air batteries were systematically investigated.The results indicated that the AZ61-1Nd-1Ca alloy exhibits the best corrosion resistance during electrochemical experiments and hydrogen evolution tests.Discharge performance tests showed that the AZ61-1Nd-1Ca alloy exhibits the best specific capacity(1193.6 mAh g^(-1)),energy density(1893.7 mWh g^(-1)),anode efficiency(60.3%),and cell voltage(1.246 V)at higher current densities.This is mainly attributed to the addition of Ca element,which refines the grain size of the alloy and increases the grain boundary area.In addition,Al_(2)Nd and Al_(2)Ca phases have similar corrosion mechanisms in the cross-section of the extruded alloy.The precipitated granular Al_(2)Ca phase is uniformly dispersed on the substrate and acts as a physical barrier.This not only enhances the corrosion resistance of the alloy but also improves the anode efficiency of the alloy during discharge. 展开更多
关键词 Mg alloy Ca addition Mg-air battery Corrosion behavior discharge performance
原文传递
Achieving ultrahigh anodic-efficiency and energy-density Mg–air battery via the discharge product film design of bulk Mg anode 被引量:1
5
作者 Jialuo Huang Zuxiang Sun +4 位作者 Jianxin Tan Can Sun Xingpeng Liao Tao Ying Fuyong Cao 《Journal of Magnesium and Alloys》 2025年第6期2565-2580,共16页
This study exhibits a design of the discharge product film of a bulk AZ63-Ce-La-Ca(AZ63X)anode for Mg-air battery.An ideal discharge product film for Mg anode is that it could inhibit the anodic hydrogen evolution but... This study exhibits a design of the discharge product film of a bulk AZ63-Ce-La-Ca(AZ63X)anode for Mg-air battery.An ideal discharge product film for Mg anode is that it could inhibit the anodic hydrogen evolution but does not hinder the transfer of the electrons at the interface.Fortunately,the addition of Ce,La,and Ca into AZ63 alloy achieves this goal.The Mg-air battery with AZ63X anode in 3.5%Na Cl has an ultrahigh anodic efficiency of 85.7±1.7%and energy-density of 2431±53 mWh g^(-1)with the unique discharge product film,surpassing the values of most reported Mg-air batteries.Furthermore,the alloying elements reduce the anode delamination effect significantly by transforming the block Mg_(17)Al_(12)phase into the connected Mg_(17)Al_(12)structure and fine rod Al_(2)RE and Al_(2)Ca. 展开更多
关键词 Mg-air battery discharge product film ANODE discharge performance Hydrogen evolution
在线阅读 下载PDF
Discharge properties and electrochemical behaviors of AZ80-La-Gd magnesium anode for Mg-air battery 被引量:10
6
作者 Xingrui Chen Yonghui Jia +4 位作者 Qichi Le Henan Wang Xiong Zhou Fuxiao Yu Andrej Atrens 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期2113-2121,共9页
In this work,the discharge properties and electrochemical behaviors of as-cast AZ80-La-Gd anode for Mg-air battery have been investigated and compared with the AZ80 anode.The microstructure evolution,electrochemical b... In this work,the discharge properties and electrochemical behaviors of as-cast AZ80-La-Gd anode for Mg-air battery have been investigated and compared with the AZ80 anode.The microstructure evolution,electrochemical behaviors and surface morphologies after discharge have been discussed to connect the discharge properties.The results indicate that the modified AZ80-La-Gd is an outstanding candidate for anode for Mg-air batter,which has high cell voltage,stable discharge curves,good specific capacity and energy,and good anodic efficiency.It exhibits the best anodic efficiency,specific capacity and energy of 76.45%,1703.6 mAh·g^(-1)and 2186.3 mWh·g^(-1),respectively,which are20.24%,18.92%and 25.71%higher than values for AZ80 anode.Such excellent discharge performance is attributed to the Al-RE particles.They refine the Mg_(17)Al_(12)phase and therefore improve the self-corrosion resistance and desorption ability of AZ80 anode. 展开更多
关键词 Mg-air batteries Magnesium anode discharge performance Electrochemical behaviors RE compound
在线阅读 下载PDF
Microstructure and battery performance of Mg-Zn-Sn alloys as anodes for magnesium-air battery 被引量:9
7
作者 Fanglei Tong Xize Chen +3 位作者 Shanghai Wei Jenny Malmstr^m Joseph Vella Wei Gao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1967-1976,共10页
Four Mg-x Zn-y Sn(x=2,4 and y=1,3 wt.%)alloys are investigated as anode materials for magnesium-air(Mg-air)battery.The self-corrosion and battery discharge behavior of these four Mg-Zn-Sn alloys are analyzed by electr... Four Mg-x Zn-y Sn(x=2,4 and y=1,3 wt.%)alloys are investigated as anode materials for magnesium-air(Mg-air)battery.The self-corrosion and battery discharge behavior of these four Mg-Zn-Sn alloys are analyzed by electrochemical measurements and Mg-air battery tests.The results show that addition of Sn stimulates the electrochemical activity and significantly improves the anodic efficiency and specific capacity of Mg-Zn alloy anodes.Among the four alloy anodes,Mg-2Zn-3Sn(ZT23)shows the best battery discharge performance at low current densities(≤5 m A cm^(-2)),achieving high energy density of 1367 m Wh g^(-1)at 2 mA cm^(-2).After battery discharging,the surface morphology and electrochemical measurement results illustrate that a ZnO and SnO/SnO_(2)mixed film on alloy anode surface decreases self-corrosion and improves anodic efficiency during discharging.The excessive intermetallic phases lead to the failure of passivation films,acting as micro-cathodes to accelerate self-corrosion. 展开更多
关键词 Magnesium alloys Alloy anode Self-corrosion Magnesium-air battery discharge performance
在线阅读 下载PDF
Synthesis and electrochemical performances of LiCoO_2 recycled from the incisors bound of Li-ion batteries 被引量:8
8
作者 LI Jinhui ZHONG Shengwen XIONG Daoling CHEN Hao 《Rare Metals》 SCIE EI CAS CSCD 2009年第4期328-332,共5页
A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the... A new LiCoO2 recovery technology for Li-ion batteries was studied in this paper. LiCoO2 was peeled from the Al foil with dimethyl acetamide (DMAC), and then polyvinylidene fluoride (PVDF) and carbon powders in the active material were eliminated by high temperature calcining. Subsequently, Li2CO3, LiOH-H20 and LiAc-2H2O were added into the recycled powders to adjust the Li/Co molar ratio to 1.00. The new LiCoO2 was obtained by calcining the mixture at 850℃ for 12 h in air. The structure and morphology of the recycled powders and resulting samples were studied by XRD and SEM techniques, respectively. The layered structure of LiCoO2 synthesized by adding Li2CO3 is the best, and it is found to have the best characteristics as a cathode material in terms of charge-discharge capacity and cycling performance. The first discharge capacity is 160 mAh·g^-1 between 3.0-4.3 V. The discharge capacity after cycling for 50 times is still 145.2 mAh·g^-1. 展开更多
关键词 LICOO2 Li-ion batteries discharge performance cycling performance
在线阅读 下载PDF
Corrosion and discharge behavior of Mg−xLa alloys(x=0.0−0.8) as anode materials 被引量:5
9
作者 Yan SONG Hua-bao YANG +7 位作者 Yan-fu CHAI Qing-hang WANG Bin JIANG Liang WU Qin ZOU Guang-sheng HUANG Fu-sheng PAN Andrej ATRENS 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第7期1979-1992,共14页
The corrosion and discharge performances of binary Mg−xLa(x=0.2−0.8,wt.%)alloys as anode materials for Mg-based batteries were evaluated.Microstructure,hydrogen evolution,mass loss,electrochemical behavior,and half-ce... The corrosion and discharge performances of binary Mg−xLa(x=0.2−0.8,wt.%)alloys as anode materials for Mg-based batteries were evaluated.Microstructure,hydrogen evolution,mass loss,electrochemical behavior,and half-cell discharge capabilities were characterized.The results show that the corrosion rate of the Mg matrix was decreased by alloying with La,and this could be attributed to the formation of a protective La2O3-containing film on the surface of the alloy.The Mg−0.2La alloy displayed the lowest corrosion rate,i.e.,2.4 mm/a in a 3.5 wt.%NaCl solution,Furthermore,the discharge performance of Mg−0.4La alloy was superior to that of pure Mg and other Mg−La alloys;this could be associated with the modified microstructure of the Mg−0.4La alloy,which decreased the self-corrosion and accelerated the detachment of the discharge products. 展开更多
关键词 Mg-based batteries Mg−La alloys corrosion rate discharge performance
在线阅读 下载PDF
Investigation of short-channel design on performance optimization effect of Hall thruster with large height–radius ratio 被引量:2
10
作者 Haotian FAN Yongjie DING +3 位作者 Chunjin MO Liqiu WEI Hong LI Daren YU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第2期1-9,共9页
In this study,the neutral gas distribution and steady-state discharge under different discharge channel lengths were studied via numerical simulations.The results show that the channel with a length of 22 mm has the a... In this study,the neutral gas distribution and steady-state discharge under different discharge channel lengths were studied via numerical simulations.The results show that the channel with a length of 22 mm has the advantage of comprehensive discharge performance.At this time,the magnetic field intensity at the anode surface is 10%of the peak magnetic field intensity.Further analysis shows that the high-gas-density zone moves outward due to the shortening of the channel length,which optimizes the matching between the gas flow field and the magnetic field,and thus increases the ionization rate.The outward movement of the main ionization zone also reduces the ion loss on the wall surface.Thus,the propellant utilization efficiency can reach a maximum of 96.8%.Moreover,the plasma potential in the main ionization zone will decrease with the shortening of the channel.The excessively short-channel will greatly reduce the voltage utilization efficiency.The thrust is reduced to a minimum of 46.1 m N.Meanwhile,because the anode surface is excessively close to the main ionization zone,the discharge reliability is also difficult to guarantee.It was proved that the performance of Hall thrusters can be optimized by shortening the discharge channel appropriately,and the specific design scheme of short-channel of HEP-1350 PM was defined,which serves as a reference for the optimization design of Hall thruster with large height–radius ratio.The shortchannel design also helps to reduce the thruster axial dimension,further consolidating the advantages of lightweight and large thrust-to-weight ratio of the Hall thruster with large height–radius ratio. 展开更多
关键词 Hall thruster large height-radius ratio short-channel design discharge performance numerical simulation
在线阅读 下载PDF
Physical Properties and Electrochemical Performance of Solid K_2FeO_4 Samples Prepared by Ex-situ and in-situ Electrochemical Methods 被引量:2
11
作者 徐志花 王建明 +1 位作者 邵海波 张鉴清 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2007年第1期39-43,共5页
K2FeO4 powders were synthesized by the ex-situ and in-situ electrochemical methods, respectively, and characterized by infrared spectrum (IR), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) a... K2FeO4 powders were synthesized by the ex-situ and in-situ electrochemical methods, respectively, and characterized by infrared spectrum (IR), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and BET. Their electrochemical performances were investigated by means of galvanostatic discharge and electrochemi-cal impedance spectroscopy (EIS). The results of physical characterization showed that the two samples have simi-lar structural features, but their surface morphologies and oriented growth of the crystals are different, which results in smaller specific surface area and lower solubility of the ex-situ electrosynthesized K2FeO4 sample. The results of discharge experiments indicated that the ex-situ electrosythesized K2FeO4 electrode has much larger discharge ca-pacity and lower electrode polarization than the in-situ electrosynthesized K2FeO4 electrode. It was found from the results of EIS that lower electrochemical polarization might be responsible for the improvement on the discharge performance of the ex-situ electrosynthesized K2FeO4 electrode. 展开更多
关键词 K2FeO4 ELECTROSYNTHESIS discharge performance electrochemical impedance spectroscopy (EIS)
在线阅读 下载PDF
Numerical Simulation and Optimization of the Gas-Solid Coupled Flow Field and Discharging Performance of Straw Crushers
12
作者 Yuezheng Lan Yu Zhao +2 位作者 Zhiping Zhai Meihua Fan Fushun Li 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2565-2583,共19页
The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and i... The quality of crushing,power consumption,and discharging performance of a straw crusher are greatly influenced by the characteristics of its internalflowfield.To enhance the straw crusher’sflowfield properties and improve the efficiency with which crushed material is discharged,first,the main structural parameters influencing the airflow in the crusher are discussed.Then,the coupled gas-solidflowfield in the straw crusher is numerically calculated through solution of the Navier-Stokes equations and application of the discrete element method(DEM).Finally,the discharge performance index of the crusher is examined through detailed analysis of the crushed material dynamics.Additionally,a multi-island genetic algorithm is used to optimize the structure and operational factors that have significant effects on the discharge performance.With optimization,the accumulation rate of crushed materials in the bottom region of the straw crusher decreases by 20.08%,and the massflow rate at the discharge outlet increases by 11.63%. 展开更多
关键词 Straw crusher CFD–DEM gas-solid couplingflowfield discharging performance multi-island genetic algorithm
在线阅读 下载PDF
Superior specific capacity and energy density simultaneously achieved by Sr/In co-deposition behavior of Mg-Sr-In ternary alloys as anodes for Mg-Air cells 被引量:2
13
作者 Bowen Yu Haitao Jiang Yun Zhang 《Journal of Magnesium and Alloys》 2025年第2期640-653,共14页
In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid... In this work,the combined addition of strontium/indium(Sr/In)to the magnesium anode for Mg-Air Cells is investigated to improve discharge performance by modifying the anode/electrolyte interface.Indium exists as solid solution atoms in theα-Mg matrix without its second-phase generation,and at the same time facilitates grain refinement,dendritic segregation and Mg17Sr2-phases precipitation.During discharge operation,Sr modifies the film composition via its compounds and promoted the redeposition of In at the substrate/film interface;their co-deposition behavior on the anodic reaction surface enhances anode reaction kinetics,suppresses the negative difference effect(NDE)and mitigates the“chunk effect”(CE),which is contributed to uniform dissolution and low self-corrosion hydrogen evolution rate(HER).Therefore,Mg-Sr-xIn alloy anodes show excellent discharge performance,e.g.,0.5Sr-1.0In shows an average discharge voltage of 1.4234 V and a specific energy density of 1990.71 Wh kg^(-1)at 10 mA cm^(-2).Furthermore,the decisive factor(CE and self-discharge HE)for anodic efficiency are quantitively analyzed,the self-discharge is the main factor of cell efficiency loss.Surprisingly,all Mg-Sr-xIn anodes show anodic efficiency greater than 60%at high current density(≥10 mA cm^(-2)),making them excellent candidate anodes for Mg-Air cells at high-power output. 展开更多
关键词 Mg-air cells CO-DEPOSITION Anode/electrolyte interface Anodic efficiency discharge performance
在线阅读 下载PDF
New strategy for Mg-air battery voltage-efficiency synergy by engineering protective film with cation vacancies on Mg anode surface 被引量:1
14
作者 Yuying He Qianyu Wang +6 位作者 Jinghuai Zhang Lele Wang Shujuan Liu Zehua Li Zhen Wei Hao Dong Xiaobo Zhang 《Journal of Materials Science & Technology》 2025年第10期24-41,共18页
Although the Mg-air battery with high theoretical energy density is desirable for the energy supply of marine engineering equipment,its applications remain limited due to the low actual discharge voltage and inferior ... Although the Mg-air battery with high theoretical energy density is desirable for the energy supply of marine engineering equipment,its applications remain limited due to the low actual discharge voltage and inferior Mg anode utilization rate.In addition to the microstructure of Mg alloy anodes,the properties of discharge product films are of great importance to the discharge performance.Herein,the discharge behaviors of Mg-Y-Zn alloys are first studied mainly from the perspective of film properties.Through contrastive analysis,it is found that the sufficient Y^(3+) produced during the discharge process can substitute Mg^(2+) in Mg(OH)_(2) to introduce effective cation vacancies.The Mg-Y-Zn anode with profuse cation vacancies in the product film shows a synergy of potential and efficiency,and this can be attributed to an increase in the migration pathway for Mg^(2+),reducing the diffusion over-potential caused by the protective product film.This study is expected to provide a new strategy from the perspective of cation vacancy design of discharge film for developing high-performance Mg-air batteries. 展开更多
关键词 Mg alloy Mg-air battery Product film Cation vacancy discharge performance
原文传递
Preparation of porous Mg electrode by electrodeposition 被引量:1
15
作者 郑伟伟 徐强 +2 位作者 丁飞 张晶 刘兴江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2099-2103,共5页
In order to obtain a porous Mg electrode with a stable skeleton, organic Mg fuel cell (OMFC), the electrochemical behavior of Mg deposition on Cu and Ni metallic substrates in 1 mol/L EtMgBr/THF solution was investi... In order to obtain a porous Mg electrode with a stable skeleton, organic Mg fuel cell (OMFC), the electrochemical behavior of Mg deposition on Cu and Ni metallic substrates in 1 mol/L EtMgBr/THF solution was investigated by SEM, EDS and electrochemical methods. The experimental results show that Mg can be electrodeposited on both substrates, as a continuous layer on a Cu substrate. Accordingly, an approach for producing a porous Mg electrode with a stable skeleton of OMFC was proposed by means of electrodeposition of Mg on a foamed Ni substrate with a layer of Cu pre-plating. The discharge performance of this porous Mg electrode of OMFC is superior to that of a planar Mg electrode. 展开更多
关键词 magnesium electrodeposition porous electrode organic electrolyte discharge performance
在线阅读 下载PDF
Experimental and numerical investigation of a Hall thruster with a chamfered channel wall 被引量:1
16
作者 Hong Li Guo-Jun Xia +4 位作者 Wei Mao Jin-Wen Liu Yong-Jie Ding Da-Ren Yu Xiao-Gang Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第10期484-494,共11页
A discharge channel with a chamfered wall not only has application in the design of modern Hall thrusters, but also exists where the channel wall is eroded, and so is a common status for these units. In this paper, th... A discharge channel with a chamfered wall not only has application in the design of modern Hall thrusters, but also exists where the channel wall is eroded, and so is a common status for these units. In this paper, the laws and mechanisms that govern the effect of the chamfered wall on the performance of a Hall thruster are investigated. By applying both experimental measurement and particle-in-cell simulation, it is determined that there is a moderate chamfer angle that can further improve the optimal performance obtained with a straight channel. This is because the chamfering of the wall near the channel exit can enhance ion acceleration and effectively reduce ion recombination on the wall, which is favorable to the promotion of the thrust and efficiency. However, the chamfer angle should not be too large; otherwise, both the density of the propellant gas and the distribution of the plasma potential in the channel are influenced, which is undesirable for efficient propellant utilization and beam concentration. Therefore, it is suggested that the chamfer shape of the channel wall is an important factor that must be carefully considered in the design of Hall thrusters. 展开更多
关键词 Hall thruster chamfered wall discharge performance physical mechanism
原文传递
Microstructures and Properties of Honeycomb Sulfur/carbon Black/MoS_(2) Composites
17
作者 CUI Chunjuan LIU Yue +4 位作者 ZHAO Yanan LIU Yanyun WANG Yan WEI Jian HU Ping 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1073-1078,共6页
Microstructure and property of sulfur/carbon black composites prepared by ball milling were studied.Sulfur/carbon black composites were obtained by melting the mixture of sulfur and carbon black in 155℃and dispersing... Microstructure and property of sulfur/carbon black composites prepared by ball milling were studied.Sulfur/carbon black composites were obtained by melting the mixture of sulfur and carbon black in 155℃and dispersing evenly in carbon black after hydrothermal reaction.Thus,its conductive properties were improved.Moreover,microstructure and property of honeycomb sulfur/carbon black/MoS_(2) prepared by hydrothermal method as a cathode material for lithium-sulfur batteries were studied.The initial discharge specific capacity of the material at 0.2 A/g current density is 838.495 mA·h/g,and the 55.14%after 100 weeks of cycling.It is indicated that MoS_(2) can not only combine with polysulfides through electrostatic action or the action of chemical bonds,but also honeycomb porous structure.MoS_(2) can fix polysulfides groups and prevent their shuttle.Therefore,the cycling performance of the battery is effectively improved. 展开更多
关键词 lithium-sulfur battery honeycomb MoS_(2) charge/discharge performance
原文传递
Numerical multi-physical optimization of operating condition and current collecting setup for large-area solid oxide fuel cells 被引量:2
18
作者 Chengrong YU Zehua PAN +6 位作者 Hongying ZHANG Bin CHEN Wanbing GUAN Bin MIAO Siew Hwa CHAN Zheng ZHONG Yexin ZHOU 《Frontiers in Energy》 SCIE EI CSCD 2024年第3期356-368,共13页
Due to the depletion of traditional fossil fuels and the aggravation of related environmental problems,hydrogen energy is gaining more attention all over the world.Solid oxide fuel cell(SOFC)is a promising power gener... Due to the depletion of traditional fossil fuels and the aggravation of related environmental problems,hydrogen energy is gaining more attention all over the world.Solid oxide fuel cell(SOFC)is a promising power generation technology operating on hydrogen with a high efficiency.To further boost the power output of a single cell and thus a single stack,increasing the cell area is an effective route.However,it was recently found that further increasing the effective area of an SOFC single cell with a flat-tubular structure and symmetric double-sided cathodes would result in a lower areal performance.In this work,a multi-physical model is built to study the effect of the effective area on the cell performance.The distribution of different physical fields is systematically analyzed.Optimization of the cell performance is also pursued by systematically tuning the cell operating condition and the current collection setup.An improvement of 42%is revealed by modifying the inlet gas flow rates and by enhancing the current collection.In the future,optimization of cell geometry will be performed to improve the homogeneity of different physical fields and thus to improve the stability of the cell. 展开更多
关键词 solid oxide fuel cell(SOFC) large effective area flow rate discharge performance current collection
原文传递
High energy storage properties in Ca_(0.7)La_(0.2)TiO_(3)-modified NaNbO_(3)-based lead-free antiferroelectric ceramics
19
作者 Cen Liang Changyuan Wang +3 位作者 Wenjun Cao Hanyu Zhao Feng Li Chunchang Wang 《Journal of Advanced Dielectrics》 2023年第1期17-24,共8页
In this work,(1−x)(0.92NaNbO_(3)-0.08BaTiO_(3))-xCa_(0.7)La_(0.2)TiO_(3)(NNBT-xCLT)ceramics were successfully designed and prepared by the solid-state reaction method.Investigations on the structure,dielectric,and ene... In this work,(1−x)(0.92NaNbO_(3)-0.08BaTiO_(3))-xCa_(0.7)La_(0.2)TiO_(3)(NNBT-xCLT)ceramics were successfully designed and prepared by the solid-state reaction method.Investigations on the structure,dielectric,and energy storage properties were performed.The NNBT-0.25CLT ceramic with orthorhombic phase at room temperature was found to exhibit extremely small grain size and compacted microstructure.A large Wrec of 3.1 J/cm^(3) and a highηof 91.5%under the electric field of 360 kV/cm were achieved simultaneously in the sample.In addition,the energy storage performance of the sample exhibits thermal stability over the temperature range of 25-140°C and the frequency range of 5-500 Hz.The charge and discharge tests reveal that the ceramic shows a large current density CD of 965 A/cm2 and power density PD of 154 MW/cm^(3).This work demonstrates that the NNBT-0.25CLT ceramic is a prospective energy storage material for potential application in the field of pulsed power devices. 展开更多
关键词 Lead-free NaNbO_(3)-based ceramics phase transition energy storage charge discharge performance
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部