Taste acuity of adult patients undergoing cancer treatment has been well investigated;however, studies of taste acuity after completion of cancer treatment are limited, particularly in children. This study aimed to as...Taste acuity of adult patients undergoing cancer treatment has been well investigated;however, studies of taste acuity after completion of cancer treatment are limited, particularly in children. This study aimed to assess taste acuity in pediatric cancer patients after treatment completion. Seventy-three patients who had completed cancer treatment (median age, 13 years;range, 7 - 18 years) and had not received any further treatment for at least 6 months were enrolled. Eighty-one healthy children (median age, 10 years;range, 8 - 19 years) served as controls. We determined the thresholds for four tastes (sweet, salty, sour, and bitter) using the filter-paper disc method. There was no significant difference in the thresholds of taste acuity for the four test solutions between the patient and control groups. The duration since treatment completion (<5 years vs. ≥5 years) had no significant impact on taste acuity for the four test solutions. The threshold for tasting salt was significantly higher in the group that had received chemotherapy + radiation and/or hematopoietic stem cell transplantation than that in the group that had received chemotherapy-only. Our results indicated that taste acuity after treatment completion in pediatric cancer patients was the same as that in healthy children. However, some treatment modalities were correlated with an impaired ability to taste salt. Gustatory test results should be considered while deciding nutritional support modalities after treatment completion in pediatric cancer patients.展开更多
The present research is focused on the numerical crack coalescence analysis of the micro-cracks and cracks produced during the cutting action of TBM disc cutters. The linear elastic fracture mechanics(LEFM) concepts a...The present research is focused on the numerical crack coalescence analysis of the micro-cracks and cracks produced during the cutting action of TBM disc cutters. The linear elastic fracture mechanics(LEFM) concepts and the maximum tangential stress criterion are used to investigate the micro crack propagation and its direction underneath the excavating discs. A higher order displacement discontinuity method with quadratic displacement discontinuity elements is used to estimate the stress intensity factors near the crack tips. Rock cutting mechanisms under single and double type discs are simulated by the proposed numerical method.The main purposes of the present modeling are to simulate the chip formation process of indented rocks by single and double discs.The effects of specific disc parameters(except speed) on the thrust force Ft, the rolling force Fr, and the specific energy ES are investigated. It has been shown that the specific energy(energy required to cut through a unit volume of rock) of the double disc is less than that of the single disc. Crack propagation in rocks under disc cutters is numerically modeled and the optimum ratio of disc spacing S to penetration depth Pd(i.e. S/Pd ratio) of about 10 is obtained, which is in good agreement with the theoretical and experimental results cited in the literature.展开更多
Straight-and curved-bar refining plates are two important types of plates commonly used in disc refiners in the papermaking industry.Theoretically,the curved-bar refining plate has a relatively uniform bar interaction...Straight-and curved-bar refining plates are two important types of plates commonly used in disc refiners in the papermaking industry.Theoretically,the curved-bar refining plate has a relatively uniform bar interaction angle,which indicates uniform refining effects.The bar angle of the curved bar was proposed and two typical curved-bar plates,the three-stage radial curved-bar plate and isometric curved-bar plate,were designed in this paper.The arc equations of the curved-bar center line and curved-bar edges were established and finally,the specific edge load(SEL)of the curved-bar plate was derived.The determination of bar parameters was discussed,which provides a theoretical basis for the design of curved-bar plates.展开更多
A novel optimization methodology for the disc cutter designs of tunnel boring machines (TBM) was presented. To fully understand the characteristics and performance of TBM cutters, a comprehensive list of performance p...A novel optimization methodology for the disc cutter designs of tunnel boring machines (TBM) was presented. To fully understand the characteristics and performance of TBM cutters, a comprehensive list of performance parameters were investigated, including maximum equivalent stress and strain, specific energy and wear life which were closely related to the cutting forces and profile geometry of the cutter rings. A systematic method was employed to evaluate an overall performance index by incorporating objectives at all possible geological conditions. The Multi-objective & Multi-geologic Conditions Optimization (MMCO) program was then developed, which combined the updating of finite element model, system evaluation, finite element solving, post-processing and optimization algorithm. Finally, the MMCO was used to optimize the TBM cutters used in a TBM tunnel project in China. The results show that the optimization significantly improves the working performances of the cutters under all geological conditions considered.展开更多
In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient o...In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.展开更多
A two dimensional analytical method for predicting the magnetic field in the airgap/magnet region of a permanent magnet (PM) disc type machine is presented. The solutions of the governing field equations are given i...A two dimensional analytical method for predicting the magnetic field in the airgap/magnet region of a permanent magnet (PM) disc type machine is presented. The solutions of the governing field equations are given in both Cartesian and cylindrical coordinates. The expressions derived in this paper can be used conveniently for optimal design of machine. The computed results using the proposed 2D analytical method are validated by the more accurate, though a lot more complicated, 3D finite element analyses.展开更多
The variational method is applied to calculate the dispersion characteristics of disc-loaded waveguide slow-wave structures. The parameters describing the waveguide discontinuities in disc-loaded waveguide are calcula...The variational method is applied to calculate the dispersion characteristics of disc-loaded waveguide slow-wave structures. The parameters describing the waveguide discontinuities in disc-loaded waveguide are calculated by the variational method. Then the dispersion characteristics of slow-wave structures are obtained using lossless microwave quadrupole theory. Good agreement was observed between results of the Variational method and those of field matching method and high frequency structure simulator. In the case of broad band, results of the variational method are better than those of field matching method.展开更多
This paper shows the thermal and stress analysis of the worn brake disc for a Taurus class locomotive. The numerical analyses are carried out under the experimental testing program,Priifprogramm No.5,which is adjusted...This paper shows the thermal and stress analysis of the worn brake disc for a Taurus class locomotive. The numerical analyses are carried out under the experimental testing program,Priifprogramm No.5,which is adjusted for this type of locomotives by UIC CODE 541-3.The simulations results under mentioned program show the most unfavorable case of braking.The numerical analysis is done with the finite element method(FEM), using ABAQUS software.展开更多
In this study, numerical optimisation and experimental validation of a divided rail freight brake disc crown made of grey cast iron EN-GJL-250 is presented.The analysed brake disc is used in rail freight wagons and po...In this study, numerical optimisation and experimental validation of a divided rail freight brake disc crown made of grey cast iron EN-GJL-250 is presented.The analysed brake disc is used in rail freight wagons and possesses a load capacity of 22.5 tons per axle. Two of the divided rail freight brake discs are mounted on each axle.With the aid of numerical analysis, the thermal dissipation properties of the brake disc were optimised and ventilation losses were reduced, and the numerical results were compared with experimental results. A one-way fluid–structure interaction analysis was performed. A computational fluid dynamic model of a divided rail freight brake disc, used to predict air flow properties and heat convection, was incorporated into a finite element model of the disc and used to evaluate the temperature of the disc. A numerical parametrical optimisation of cooling ribs of the brake disc was also performed, and novel optimised cooling ribs were developed. A transient thermal numerical analysis of the brake disc was validated using temperature measurements obtained during a braking test on a test bench. The ventilation losses of the brake disc were measured on a test bench specifically designed for the task, and the losses were compared to the simulation results. The experimentally obtained ventilation losses and temperature measurements compared favourably with the simulation results, confirming that this type of simulation process may be confidently applied in the future. Through systematic optimisation of the divided rail freight brake disc, ventilation losses were reduced by 37% and the mass was reduced by 21%, resulting in better thermal performance that will bring with it substantial energy savings.展开更多
A method of calculating a possible stability loss by a rotating circular annular disc of variable thickness is suggested within the theory of perfect plasticity with the help of small parameter method. A characteristi...A method of calculating a possible stability loss by a rotating circular annular disc of variable thickness is suggested within the theory of perfect plasticity with the help of small parameter method. A characteristic equation for a critical radius of a plastic zone is obtained as a first approximation. The formula for the critical angular velocity, determining the stability loss of the disc according to the self-balanced form, is derived. The method using which we can take into account the disc’s geometry and loading parameters is also specified. The efficiency of the proposed method is shown in Section 5 while considering an illustrative example. The values of critical angular velocity of rotating are found numerically for different parameters of the disc.展开更多
文摘Taste acuity of adult patients undergoing cancer treatment has been well investigated;however, studies of taste acuity after completion of cancer treatment are limited, particularly in children. This study aimed to assess taste acuity in pediatric cancer patients after treatment completion. Seventy-three patients who had completed cancer treatment (median age, 13 years;range, 7 - 18 years) and had not received any further treatment for at least 6 months were enrolled. Eighty-one healthy children (median age, 10 years;range, 8 - 19 years) served as controls. We determined the thresholds for four tastes (sweet, salty, sour, and bitter) using the filter-paper disc method. There was no significant difference in the thresholds of taste acuity for the four test solutions between the patient and control groups. The duration since treatment completion (<5 years vs. ≥5 years) had no significant impact on taste acuity for the four test solutions. The threshold for tasting salt was significantly higher in the group that had received chemotherapy + radiation and/or hematopoietic stem cell transplantation than that in the group that had received chemotherapy-only. Our results indicated that taste acuity after treatment completion in pediatric cancer patients was the same as that in healthy children. However, some treatment modalities were correlated with an impaired ability to taste salt. Gustatory test results should be considered while deciding nutritional support modalities after treatment completion in pediatric cancer patients.
文摘The present research is focused on the numerical crack coalescence analysis of the micro-cracks and cracks produced during the cutting action of TBM disc cutters. The linear elastic fracture mechanics(LEFM) concepts and the maximum tangential stress criterion are used to investigate the micro crack propagation and its direction underneath the excavating discs. A higher order displacement discontinuity method with quadratic displacement discontinuity elements is used to estimate the stress intensity factors near the crack tips. Rock cutting mechanisms under single and double type discs are simulated by the proposed numerical method.The main purposes of the present modeling are to simulate the chip formation process of indented rocks by single and double discs.The effects of specific disc parameters(except speed) on the thrust force Ft, the rolling force Fr, and the specific energy ES are investigated. It has been shown that the specific energy(energy required to cut through a unit volume of rock) of the double disc is less than that of the single disc. Crack propagation in rocks under disc cutters is numerically modeled and the optimum ratio of disc spacing S to penetration depth Pd(i.e. S/Pd ratio) of about 10 is obtained, which is in good agreement with the theoretical and experimental results cited in the literature.
基金funding by the National Natural Science Foundation (Grant No. 50745048)
文摘Straight-and curved-bar refining plates are two important types of plates commonly used in disc refiners in the papermaking industry.Theoretically,the curved-bar refining plate has a relatively uniform bar interaction angle,which indicates uniform refining effects.The bar angle of the curved bar was proposed and two typical curved-bar plates,the three-stage radial curved-bar plate and isometric curved-bar plate,were designed in this paper.The arc equations of the curved-bar center line and curved-bar edges were established and finally,the specific edge load(SEL)of the curved-bar plate was derived.The determination of bar parameters was discussed,which provides a theoretical basis for the design of curved-bar plates.
文摘A novel optimization methodology for the disc cutter designs of tunnel boring machines (TBM) was presented. To fully understand the characteristics and performance of TBM cutters, a comprehensive list of performance parameters were investigated, including maximum equivalent stress and strain, specific energy and wear life which were closely related to the cutting forces and profile geometry of the cutter rings. A systematic method was employed to evaluate an overall performance index by incorporating objectives at all possible geological conditions. The Multi-objective & Multi-geologic Conditions Optimization (MMCO) program was then developed, which combined the updating of finite element model, system evaluation, finite element solving, post-processing and optimization algorithm. Finally, the MMCO was used to optimize the TBM cutters used in a TBM tunnel project in China. The results show that the optimization significantly improves the working performances of the cutters under all geological conditions considered.
文摘In order to develop a general calculating rotor’s torsional stiffness based on stiffness influence coefficient for different rotor assembling, the calculation method of the torsional stiffness influence coefficient of equal thickness disc is researched in this paper at first. Then the torsional stiffness influence coefficient λ of equal thickness disc is fit to a binary curved face and a calculation equation is obtained based on a large quantity of calculating data, which lays the foundation for research on a general calculating method of rotor torsional stiffness. Thirdly a simplified calculation method for equivalent stiffness diameter of stepped equal thickness disc and cone disc in the steam turbine generators is suggested. Finally a general calculating program for calculating rotor’s torsional vibration features is developed, and the torsional vibration features of a verity of steam turbine rotors are calculated for verification. The calculating results show that stiffness influence coefficient λ of equal-thickness disc depends on parameters of B and H, as well as the stiffness influence coefficient λ;and discs with complex structure can be simplified to equal-thickness discs with little error by using the method suggested in this paper;error can be controlled within 1% when equivalent diameter of stiffness is calculated by this method.
文摘A two dimensional analytical method for predicting the magnetic field in the airgap/magnet region of a permanent magnet (PM) disc type machine is presented. The solutions of the governing field equations are given in both Cartesian and cylindrical coordinates. The expressions derived in this paper can be used conveniently for optimal design of machine. The computed results using the proposed 2D analytical method are validated by the more accurate, though a lot more complicated, 3D finite element analyses.
文摘The variational method is applied to calculate the dispersion characteristics of disc-loaded waveguide slow-wave structures. The parameters describing the waveguide discontinuities in disc-loaded waveguide are calculated by the variational method. Then the dispersion characteristics of slow-wave structures are obtained using lossless microwave quadrupole theory. Good agreement was observed between results of the Variational method and those of field matching method and high frequency structure simulator. In the case of broad band, results of the variational method are better than those of field matching method.
文摘This paper shows the thermal and stress analysis of the worn brake disc for a Taurus class locomotive. The numerical analyses are carried out under the experimental testing program,Priifprogramm No.5,which is adjusted for this type of locomotives by UIC CODE 541-3.The simulations results under mentioned program show the most unfavorable case of braking.The numerical analysis is done with the finite element method(FEM), using ABAQUS software.
基金supported by the European Union’s Horizon 2020 researchinnovation programme FUTURA under Grant Agreement No. 700985
文摘In this study, numerical optimisation and experimental validation of a divided rail freight brake disc crown made of grey cast iron EN-GJL-250 is presented.The analysed brake disc is used in rail freight wagons and possesses a load capacity of 22.5 tons per axle. Two of the divided rail freight brake discs are mounted on each axle.With the aid of numerical analysis, the thermal dissipation properties of the brake disc were optimised and ventilation losses were reduced, and the numerical results were compared with experimental results. A one-way fluid–structure interaction analysis was performed. A computational fluid dynamic model of a divided rail freight brake disc, used to predict air flow properties and heat convection, was incorporated into a finite element model of the disc and used to evaluate the temperature of the disc. A numerical parametrical optimisation of cooling ribs of the brake disc was also performed, and novel optimised cooling ribs were developed. A transient thermal numerical analysis of the brake disc was validated using temperature measurements obtained during a braking test on a test bench. The ventilation losses of the brake disc were measured on a test bench specifically designed for the task, and the losses were compared to the simulation results. The experimentally obtained ventilation losses and temperature measurements compared favourably with the simulation results, confirming that this type of simulation process may be confidently applied in the future. Through systematic optimisation of the divided rail freight brake disc, ventilation losses were reduced by 37% and the mass was reduced by 21%, resulting in better thermal performance that will bring with it substantial energy savings.
文摘A method of calculating a possible stability loss by a rotating circular annular disc of variable thickness is suggested within the theory of perfect plasticity with the help of small parameter method. A characteristic equation for a critical radius of a plastic zone is obtained as a first approximation. The formula for the critical angular velocity, determining the stability loss of the disc according to the self-balanced form, is derived. The method using which we can take into account the disc’s geometry and loading parameters is also specified. The efficiency of the proposed method is shown in Section 5 while considering an illustrative example. The values of critical angular velocity of rotating are found numerically for different parameters of the disc.