This study aimed to examine the effects of empowerment and education intervention to promote Advance Care Planning (ACP) for residents in a highly aged and depopulated region. The study utilized a single-group pre- an...This study aimed to examine the effects of empowerment and education intervention to promote Advance Care Planning (ACP) for residents in a highly aged and depopulated region. The study utilized a single-group pre- and post-test design and was conducted in Osakikamijima, Hiroshima, Japan. The researchers and town officials together formed an ACP committee and created an intervention framework. An ACP workshop was held for the participants and a self-administered questionnaire was carried out before, immediately after, and 3 months after the workshop. A total of 125 residents participated in the workshop and 87 of them completed more than 80% of the questionnaire items, whose responses were analyzed as valid responses. The number of participants who completed the AD increased significantly three months after the workshop (p = 0.008). There was a slight increase in the frequency of consultation with the family, but no change was observed in terms of consultation with healthcare providers. The educational intervention in-creased the respondents’ awareness and knowledge of ACP but did not affect the autonomous decision-making process regarding end-of-life care. This strategic process of ACP empowered the residents’ awareness and attitude towards end-of-life care with an increased completion rate of AD. On the other hand, cognitive barriers remained toward communication and decision-making shared with healthcare providers. Insufficient consultation with family members also became evident. Therefore, a new intervention strategy which helps increase communication with healthcare providers needs to be formulated and guidelines for consultation with the family and others need to be prepared.展开更多
This report documents the findings of a mixed-methods study focused on the advanced directives of 182 residents of three LTC facilities in southern Ontario, Canada. Although almost all had a completed advance directiv...This report documents the findings of a mixed-methods study focused on the advanced directives of 182 residents of three LTC facilities in southern Ontario, Canada. Although almost all had a completed advance directive within 3 months of death, most did not have a palliative designation or directive until a few days before they died. Each facility’s written Progress Notes revealed staff members usually sought additional confirmation of care preferences from residents’ substitute decision-makers within a few days of the death. It was thus common for advance directives to change from a more interventionist approach to the least interventionist approach near death. This change indicates that the meaning and significance of advance care planning and resulting advance directives must be considered in light of the processes and temporal factors involved in their completion and use within this distinct population. The relational nature of advance care planning and concern about ageism as a factor for withholding or withdrawing life support for LTC residents are considered as possible explanatory factors. These findings and their implications are described in relation to end-of-life care policies and practices in LTC facilities.展开更多
Background:Information on the possibility of drawing up Advance Directives(AD)is a necessity,and represents a major medical,ethical,and legal challenge.The difficulties are numerous,both organizational and cultural,an...Background:Information on the possibility of drawing up Advance Directives(AD)is a necessity,and represents a major medical,ethical,and legal challenge.The difficulties are numerous,both organizational and cultural,and this is also true in the context of oncology,where ADs(and more broadly,advanced palliative care)are of critical importance.As an eminently sensitive subject,dealing with ADs(and therefore with end-of-life issues)requires both societal and medical/health-care acculturation.An institutional approach has therefore been developed,to deploy information tools,training professionals,and formalize the collection of AD.Such an approach cannot be implemented without an assessment not only of its objective results but also above all of its psychological effects,on both users(patients,family caregivers)and professionals.Methods:This longitudinal study,based on a mixed-method,interdisciplinary approach,will assess the impact of this information dissemination on AD,in terms of both potential positive and negative effects,using validated measurement methods.Thus,this study follows the 5 criteria of the RE-AIM model,designed to analyze the interest and impact of a device intended for users of the healthcare system;we will use a mixed methodology,relying on both a quantitative component(counting the number of people benefiting from the scheme,and those requesting support in drawing up their DA...,administering questionnaires),as well as a qualitative component(focus groups)which will enable us to study the subjective experiences of users,their relatives and the professionals involved in the scheme.Results:The results of this study will make it possible to determine the effects of this system of assistance in the drafting of ADs,which is currently being promoted by the legislator,but which is struggling to be implemented.展开更多
Psychiatric advance directives(PADs)represent a significant stride towards self-determination in mental healthcare.These legal documents allow individuals with mental illness to articulate their treatment preferences ...Psychiatric advance directives(PADs)represent a significant stride towards self-determination in mental healthcare.These legal documents allow individuals with mental illness to articulate their treatment preferences for future psychiatric crises when decision-making capacity may be impaired.Designed to empower individuals and reduce coercive interventions,PADs hold the poten-tial to transform patient-clinician dynamics.展开更多
The use of directives in communicating the nature of the pandemic and reference to social experiences were promoted using images on social media platforms.The images or memes are used to create awareness and reinforce...The use of directives in communicating the nature of the pandemic and reference to social experiences were promoted using images on social media platforms.The images or memes are used to create awareness and reinforce the criteria for safety during the pandemic.Previous studies on internet memes have concentrated on humor generation,speaker-hearer shared knowledge,neologism,and multimodality among others,with insufficient attention paid to the use of directives and references in such coronavirus-motivated memes.This paper,therefore,examines how directives and references are employed in conveying expected social responsibilities through coronavirus-motivated internet memes in Nigeria and other socio-cultural contexts.For data,one hundred coronavirus-motivated memes were purposively selected from Facebook,and eight representative memes were subjected to pragmatic analysis using aspects of Jacob Mey’s(2001.Pragmatics:An introduction,2nd edn.USA:Blackwell Publishing)pragmatic acts theory to unearth insights from them.The paper observes that the various spheres of life that are relatable to an online audience help to express what the pandemic is about and enhance the meaning of the pandemic with the context of the use of the memes,giving clearer perspectives on the pandemic.Directives and references are useful tools for conveying social responsibilities to online audience.展开更多
The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor ...The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.展开更多
在相干信号波达方向(direction of arrival,DOA)估计中,当阵列接收到的相干信号处于低信噪比时,DOA估计性能会大大降低。针对该问题,提出一种增强的时空平滑(enhanced spatio-temporal smoothing,ESTS)算法,在使用时空相关矩阵重构接收...在相干信号波达方向(direction of arrival,DOA)估计中,当阵列接收到的相干信号处于低信噪比时,DOA估计性能会大大降低。针对该问题,提出一种增强的时空平滑(enhanced spatio-temporal smoothing,ESTS)算法,在使用时空相关矩阵重构接收数据矩阵的时空平滑(spatio-temporal smoothing,STS)方法的基础上进行了改进。首先对子阵列时空相关矩阵进行平方预处理,然后通过充分利用子阵列时空相关矩阵的协方差和互协方差信息解相干,提高了相干信号的分辨率以及对噪声扰动的鲁棒性。理论分析和统计结果均表明,与其他空间平滑类解相干方法相比,该方法提高了在低信噪比、少快拍数、小角度分离情况下的相干信号DOA估计的去相关性能。展开更多
Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usu...Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usually involves complex procedures and extremely depends on unidirectional freezing technique.Herein,we propose a groundbreaking approach that leverages the assemblies of salting-out protein induced by ammonium metatungstate(AM)as the precursor,and then acquire directional three-dimensional carbon-based foams through simple pyrolysis.The electrostatic interaction between AM and protein ensures well dispersion of WC_(1−x)nanoparticles on carbon frameworks.The content of WC_(1−x)nanoparticles can be rationally regulated by AM dosage,and it also affects the electromagnetic(EM)properties of final carbon-based foams.The optimized foam exhibits exceptional EM absorption performance,achieving a remarkable minimum reflection loss of−72.0 dB and an effective absorption bandwidth of 6.3 GHz when EM wave propagates parallel to the directional pores.Such performance benefits from the synergistic effects of macroporous architecture and compositional design.Although there is a directional dependence of EM absorption,radar stealth simulation demonstrates that these foams can still promise considerable reduction in radar cross section with the change of incident angle.Moreover,COMSOL simulation further identifies their good performance in preventing EM interference among different electronic components.展开更多
With the legislative development,the organic and inorganic composition separation has become the primary requirement for sewer sediment disposal,however the relevant technology has been rarely reported and the driving...With the legislative development,the organic and inorganic composition separation has become the primary requirement for sewer sediment disposal,however the relevant technology has been rarely reported and the driving mechanism was still unclear.In this study,direct disintegration of biopolymers and indirect broken of connection point were investigated on the hydrolysis and component separation.Three typical sewer sediment treatment approaches,i.e.,alkaline,thermal and cation exchange treatments were proposed,which represented the hydrolysis-driving forces of chemical hydrolysis,physical hydrolysis and innovative cation bridging break-age.The results showed that the organic and inorganic separation rates of sewer sediment driven by alkaline,thermal and cation exchange treatments reached 21.26%,23.80%,and 19.56%-48.0%,respectively,compared to 4.43%in control.The secondary structure of proteins was disrupted,transitioning from𝛼α-helix to𝛽β-turn and random coil.Meanwhile,much biopolymers were released from solid to the liquid phase.From thermody-namic perspective,sewer sediment deposition was controlled by short-range interfacial interactions described by extended Derjaguin-Landau-Verwey-Overbeek theory.Additionally,the separation of organic and inorganic components was positively correlated with the thermodynamic parameters(Corr=0.87),highlighted the robust-ness of various driving forces.And the flocculation energy barriers were 2.40(alkaline),1.60 times(thermal),and 4.02–4.97 times(cation exchange)compared to control group.The findings revealed the contrition differ-ence of direct disintegration of gelatinous biopolymers and indirect breakage of composition connection sites in sediment composition separation,filling the critical gaps in understanding the specific mechanisms of sediment biopolymer disintegration and intermolecular connection breakage.展开更多
BACKGROUND Drug utilization research has an important role in assisting the healthcare administration to know,compute,and refine the prescription whose principal objective is to enable the rational use of drugs.Resear...BACKGROUND Drug utilization research has an important role in assisting the healthcare administration to know,compute,and refine the prescription whose principal objective is to enable the rational use of drugs.Research in developing nations relating to the cost of treatment is scarce when compared with developed countries.Thus,the drug utilization research studies from developing nations are most needed,and their number has been growing.AIM To evaluate patterns of utilization of antipsychotic drugs and direct medical cost analysis in patients newly diagnosed with schizophrenia.METHODS The present study was observational in type and based on a retrospective cohort to evaluate patterns of utilization of antipsychotic drugs using World Health Organization(WHO)core prescribing indicators and anatomical therapeutic chemical/defined daily dose indicators.We also calculated direct medical costs for a period of 6 months.RESULTS This study has found that atypical antipsychotics are the mainstay of treatment for schizophrenia in every age group and subcategories of schizophrenia.The evaluation based on WHO prescribing indicators showed a low average number of drugs per prescription and low prescribing frequency of antipsychotics from the National List of Essential Medicines 2015 and the WHO Essential Medicines List 2019.The total mean drug cost of our study was 1396 Indian rupees.The total mean cost due to the investigation in our study was 1017.34 Indian rupees.Therefore,the total mean direct medical cost incurred on patients in our study was 4337.28 Indian rupees.CONCLUSION The information from the present study can be used for reviewing and updating treatment policy at the institutional level.展开更多
The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-m...The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-middle Miocene deformed rocks of the inter-Andean valley between the Western and Central Cordilleras of Colombia.However,uncertainty remains about the age of the latest accretionary phases of the Panama-ChocóBlock.Poorly studied late Miocene volcanic rocks within the northern inter-Andean valley may provide key information to constrain the temporality of that final collision.Here,we study the deformational features of the~12-6 Ma extrusive rocks of the Combia Volcanic Province located in the northwestern Andes(Colombia).We present anisotropy of magnetic susceptibility(AMS)data for pyroclastic and volcanic rocks within the AmagáBasin,an inter-Andean depression with Oligocene-middle Miocene sedimentary rocks that recorded NW-SE compression and NE-SW simple shear caused by the Panama-ChocóBlock collision.We identified that the magnetic fabrics of the extrusive rocks of the Combia Volcanic Province reveal flow directions that indicate the occurrence of ancient volcanoes in the central axis of the AmagáBasin.Some of these fabrics do not contain any deformational features,whereas others record the same structural regime as the Oligocene-middle Miocene sedimentary rocks.We infer that variations in the intensity of the deformation promoted late Miocene local fault reactivations that,in contrast to the Oligocene-middle Miocene deformational events,did not affect the entire AmagáBasin.Age differences among the studied sections can also explain the different deformational patterns identified in the basin.Both interpretations suggest that the most significant collisional events of the Panama-ChocóBlock occurred in the Oligocene-middle Miocene,whereas the formation of the Combia Volcanic Province may have either followed or coincided with the latest stages of the accretion.展开更多
Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipmen...Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipment manufacturing,and electronic information.This review provides a comprehensive summary of the progress of AM technology in WC−Co cemented carbides.The fundamental principles and classification of AM techniques are introduced,followed by a categorization and evaluation of the AM techniques for WC−Co cemented carbides.These techniques are classified as either direct AM technology(DAM)or indirect AM technology(IDAM),depending on their inclusion of post-processes like de-binding and sintering.Through an analysis of microstructure features,the most suitable AM route for WC−Co cemented carbide products with controllable microstructure is identified as the indirect AM technology,such as binder jet printing(BJP),which integrates AM with conventional powder metallurgy.展开更多
This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the fi...This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks.展开更多
Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electrom...Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices.展开更多
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn...Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.展开更多
The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in a...The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.展开更多
Optimizing the microchannel design of the next generation of chips requires an understanding of the in situ property evolution of the chip-based materials under fast cooling.This work overcomes the conventional relian...Optimizing the microchannel design of the next generation of chips requires an understanding of the in situ property evolution of the chip-based materials under fast cooling.This work overcomes the conventional reliance on reheating data of melt-quenched glasses by demonstrating direct observations of glass transition on cooling curves utilizing the most advanced fast differential scanning calorimetry.By leveraging an MEMS chip sensor that allows for rapid heat extraction from microgram-sized samples to a purged gas coolant,the device is able to reach ultra-fast cooling rates of up to 40,000 K·s^(−1).Four thermal regions are identified by examining the cooling behaviors of two metallic glasses.This is because the actual rate of the specimen can differ from the programmed rate,especially at high set rate when the actual rate decreases before the glass transition is completed.We define the operational window for reliable cooling curve analysis,build models with empirical and theoretical analyses to determine the maximum feasible cooling rate,and demonstrate how optimizing sample mass and environment temperature broaden this window.The method avoids deceptive structural relaxation effects verified by fictivetemperature analysis and permits the capture of full glass transition during cooling.展开更多
Optical non-reciprocity is a fundamental phenomenon in photonics.It is crucial for developing devices that rely on directional signal control,such as optical isolators and circulators.However,most research in this fie...Optical non-reciprocity is a fundamental phenomenon in photonics.It is crucial for developing devices that rely on directional signal control,such as optical isolators and circulators.However,most research in this field has focused on systems in equilibrium or steady states.In this work,we demonstrate a room-temperature Rydberg atomic platform where the unidirectional propagation of light acts as a switch to mediate time-crystalline-like collective oscillations through atomic synchronization.展开更多
Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capabi...Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.展开更多
文摘This study aimed to examine the effects of empowerment and education intervention to promote Advance Care Planning (ACP) for residents in a highly aged and depopulated region. The study utilized a single-group pre- and post-test design and was conducted in Osakikamijima, Hiroshima, Japan. The researchers and town officials together formed an ACP committee and created an intervention framework. An ACP workshop was held for the participants and a self-administered questionnaire was carried out before, immediately after, and 3 months after the workshop. A total of 125 residents participated in the workshop and 87 of them completed more than 80% of the questionnaire items, whose responses were analyzed as valid responses. The number of participants who completed the AD increased significantly three months after the workshop (p = 0.008). There was a slight increase in the frequency of consultation with the family, but no change was observed in terms of consultation with healthcare providers. The educational intervention in-creased the respondents’ awareness and knowledge of ACP but did not affect the autonomous decision-making process regarding end-of-life care. This strategic process of ACP empowered the residents’ awareness and attitude towards end-of-life care with an increased completion rate of AD. On the other hand, cognitive barriers remained toward communication and decision-making shared with healthcare providers. Insufficient consultation with family members also became evident. Therefore, a new intervention strategy which helps increase communication with healthcare providers needs to be formulated and guidelines for consultation with the family and others need to be prepared.
文摘This report documents the findings of a mixed-methods study focused on the advanced directives of 182 residents of three LTC facilities in southern Ontario, Canada. Although almost all had a completed advance directive within 3 months of death, most did not have a palliative designation or directive until a few days before they died. Each facility’s written Progress Notes revealed staff members usually sought additional confirmation of care preferences from residents’ substitute decision-makers within a few days of the death. It was thus common for advance directives to change from a more interventionist approach to the least interventionist approach near death. This change indicates that the meaning and significance of advance care planning and resulting advance directives must be considered in light of the processes and temporal factors involved in their completion and use within this distinct population. The relational nature of advance care planning and concern about ageism as a factor for withholding or withdrawing life support for LTC residents are considered as possible explanatory factors. These findings and their implications are described in relation to end-of-life care policies and practices in LTC facilities.
文摘Background:Information on the possibility of drawing up Advance Directives(AD)is a necessity,and represents a major medical,ethical,and legal challenge.The difficulties are numerous,both organizational and cultural,and this is also true in the context of oncology,where ADs(and more broadly,advanced palliative care)are of critical importance.As an eminently sensitive subject,dealing with ADs(and therefore with end-of-life issues)requires both societal and medical/health-care acculturation.An institutional approach has therefore been developed,to deploy information tools,training professionals,and formalize the collection of AD.Such an approach cannot be implemented without an assessment not only of its objective results but also above all of its psychological effects,on both users(patients,family caregivers)and professionals.Methods:This longitudinal study,based on a mixed-method,interdisciplinary approach,will assess the impact of this information dissemination on AD,in terms of both potential positive and negative effects,using validated measurement methods.Thus,this study follows the 5 criteria of the RE-AIM model,designed to analyze the interest and impact of a device intended for users of the healthcare system;we will use a mixed methodology,relying on both a quantitative component(counting the number of people benefiting from the scheme,and those requesting support in drawing up their DA...,administering questionnaires),as well as a qualitative component(focus groups)which will enable us to study the subjective experiences of users,their relatives and the professionals involved in the scheme.Results:The results of this study will make it possible to determine the effects of this system of assistance in the drafting of ADs,which is currently being promoted by the legislator,but which is struggling to be implemented.
文摘Psychiatric advance directives(PADs)represent a significant stride towards self-determination in mental healthcare.These legal documents allow individuals with mental illness to articulate their treatment preferences for future psychiatric crises when decision-making capacity may be impaired.Designed to empower individuals and reduce coercive interventions,PADs hold the poten-tial to transform patient-clinician dynamics.
文摘The use of directives in communicating the nature of the pandemic and reference to social experiences were promoted using images on social media platforms.The images or memes are used to create awareness and reinforce the criteria for safety during the pandemic.Previous studies on internet memes have concentrated on humor generation,speaker-hearer shared knowledge,neologism,and multimodality among others,with insufficient attention paid to the use of directives and references in such coronavirus-motivated memes.This paper,therefore,examines how directives and references are employed in conveying expected social responsibilities through coronavirus-motivated internet memes in Nigeria and other socio-cultural contexts.For data,one hundred coronavirus-motivated memes were purposively selected from Facebook,and eight representative memes were subjected to pragmatic analysis using aspects of Jacob Mey’s(2001.Pragmatics:An introduction,2nd edn.USA:Blackwell Publishing)pragmatic acts theory to unearth insights from them.The paper observes that the various spheres of life that are relatable to an online audience help to express what the pandemic is about and enhance the meaning of the pandemic with the context of the use of the memes,giving clearer perspectives on the pandemic.Directives and references are useful tools for conveying social responsibilities to online audience.
文摘The efficiency and stability of catalysts for photocatalytic hydrogen evolution(PHE)are largely governed by the charge transfer behaviors across the heterojunction interfaces.In this study,CuO,a typical semiconductor featuring a broad spectral absorption range,is successfully employed as the electron acceptor to combine with CdS for constructing a S-scheme heterojunction.The optimized photocatalyst(CdSCuO2∶1)delivers an exceptional hydrogen evolution rate of 18.89 mmol/(g·h),4.15-fold higher compared with bare CdS.X-ray photoelectron spectroscopy(XPS)and ultraviolet-visible diffuse reflection absorption spectroscopy(UV-vis DRS)confirmed the S-scheme band structure of the composites.Moreover,the surface photovoltage(SPV)and electron paramagnetic resonance(EPR)indicated that the photogenerated electrons and photogenerated holes of CdS-CuO2∶1 were respectively transferred to the conduction band(CB)of CdS with a higher reduction potential and the valence band(VB)of CuO with a higher oxidation potential under illumination,as expected for the S-scheme mechanism.Density-functional-theory calculations of the electron density difference(EDD)disclose an interfacial electric field oriented from CdS to CuO.This built-in field suppresses charge recombination and accelerates carrier migration,rationalizing the markedly enhanced PHE activity.This study offers a novel strategy for designing S-scheme heterojunctions with high light harvesting and charge utilization toward sustainable solar-tohydrogen conversion.
基金financially supported by the National Natural Science Foundation of China(Nos.22475057 and No.52373262).
文摘Directional three-dimensional carbon-based foams are emerging as highly attractive candidates for promising electromagnetic wave absorbing materials(EWAMs)thanks to their unique architecture,but their construction usually involves complex procedures and extremely depends on unidirectional freezing technique.Herein,we propose a groundbreaking approach that leverages the assemblies of salting-out protein induced by ammonium metatungstate(AM)as the precursor,and then acquire directional three-dimensional carbon-based foams through simple pyrolysis.The electrostatic interaction between AM and protein ensures well dispersion of WC_(1−x)nanoparticles on carbon frameworks.The content of WC_(1−x)nanoparticles can be rationally regulated by AM dosage,and it also affects the electromagnetic(EM)properties of final carbon-based foams.The optimized foam exhibits exceptional EM absorption performance,achieving a remarkable minimum reflection loss of−72.0 dB and an effective absorption bandwidth of 6.3 GHz when EM wave propagates parallel to the directional pores.Such performance benefits from the synergistic effects of macroporous architecture and compositional design.Although there is a directional dependence of EM absorption,radar stealth simulation demonstrates that these foams can still promise considerable reduction in radar cross section with the change of incident angle.Moreover,COMSOL simulation further identifies their good performance in preventing EM interference among different electronic components.
基金supported by Shaanxi Key Research and Development Program(No.2024SF-YBXM-546)the National Natural Science Foundation of China(No.52470161)the State Key Laboratory of Pollution Control and Resource Reuse Foundation(No.PCRRF21007).
文摘With the legislative development,the organic and inorganic composition separation has become the primary requirement for sewer sediment disposal,however the relevant technology has been rarely reported and the driving mechanism was still unclear.In this study,direct disintegration of biopolymers and indirect broken of connection point were investigated on the hydrolysis and component separation.Three typical sewer sediment treatment approaches,i.e.,alkaline,thermal and cation exchange treatments were proposed,which represented the hydrolysis-driving forces of chemical hydrolysis,physical hydrolysis and innovative cation bridging break-age.The results showed that the organic and inorganic separation rates of sewer sediment driven by alkaline,thermal and cation exchange treatments reached 21.26%,23.80%,and 19.56%-48.0%,respectively,compared to 4.43%in control.The secondary structure of proteins was disrupted,transitioning from𝛼α-helix to𝛽β-turn and random coil.Meanwhile,much biopolymers were released from solid to the liquid phase.From thermody-namic perspective,sewer sediment deposition was controlled by short-range interfacial interactions described by extended Derjaguin-Landau-Verwey-Overbeek theory.Additionally,the separation of organic and inorganic components was positively correlated with the thermodynamic parameters(Corr=0.87),highlighted the robust-ness of various driving forces.And the flocculation energy barriers were 2.40(alkaline),1.60 times(thermal),and 4.02–4.97 times(cation exchange)compared to control group.The findings revealed the contrition differ-ence of direct disintegration of gelatinous biopolymers and indirect breakage of composition connection sites in sediment composition separation,filling the critical gaps in understanding the specific mechanisms of sediment biopolymer disintegration and intermolecular connection breakage.
文摘BACKGROUND Drug utilization research has an important role in assisting the healthcare administration to know,compute,and refine the prescription whose principal objective is to enable the rational use of drugs.Research in developing nations relating to the cost of treatment is scarce when compared with developed countries.Thus,the drug utilization research studies from developing nations are most needed,and their number has been growing.AIM To evaluate patterns of utilization of antipsychotic drugs and direct medical cost analysis in patients newly diagnosed with schizophrenia.METHODS The present study was observational in type and based on a retrospective cohort to evaluate patterns of utilization of antipsychotic drugs using World Health Organization(WHO)core prescribing indicators and anatomical therapeutic chemical/defined daily dose indicators.We also calculated direct medical costs for a period of 6 months.RESULTS This study has found that atypical antipsychotics are the mainstay of treatment for schizophrenia in every age group and subcategories of schizophrenia.The evaluation based on WHO prescribing indicators showed a low average number of drugs per prescription and low prescribing frequency of antipsychotics from the National List of Essential Medicines 2015 and the WHO Essential Medicines List 2019.The total mean drug cost of our study was 1396 Indian rupees.The total mean cost due to the investigation in our study was 1017.34 Indian rupees.Therefore,the total mean direct medical cost incurred on patients in our study was 4337.28 Indian rupees.CONCLUSION The information from the present study can be used for reviewing and updating treatment policy at the institutional level.
基金supported financially by the National Natural Science Foundation of China(Grants W2433104 to V.A.P.and 42225402 to J.L.)the China Postdoctoral Science Foundation(Grant 2024M753205 to V.A.P.)+2 种基金the Institute of Geology and Geophysics of the Chinese Academy of Sciences(International Fellowship for Postdoctoral Researchers,Grant 2025PD02 to V.A.P.)an association between ECOS-NORD(France)and Colciencias/Icetex(Colombia)(Grant C12U01 to M.I.M.)Part of this project was developed under a junior fellowship scheme of Colciencias(Colombia)(Grant 706-2015 to V.A.P.),which also supported the undergraduate final project of A.T.
文摘The accretion of the Panama-ChocóBlock to the South American Plate partially drove the geological setting of the northern Andes.This event occurred in different collisional stages that are recorded in Oligocene-middle Miocene deformed rocks of the inter-Andean valley between the Western and Central Cordilleras of Colombia.However,uncertainty remains about the age of the latest accretionary phases of the Panama-ChocóBlock.Poorly studied late Miocene volcanic rocks within the northern inter-Andean valley may provide key information to constrain the temporality of that final collision.Here,we study the deformational features of the~12-6 Ma extrusive rocks of the Combia Volcanic Province located in the northwestern Andes(Colombia).We present anisotropy of magnetic susceptibility(AMS)data for pyroclastic and volcanic rocks within the AmagáBasin,an inter-Andean depression with Oligocene-middle Miocene sedimentary rocks that recorded NW-SE compression and NE-SW simple shear caused by the Panama-ChocóBlock collision.We identified that the magnetic fabrics of the extrusive rocks of the Combia Volcanic Province reveal flow directions that indicate the occurrence of ancient volcanoes in the central axis of the AmagáBasin.Some of these fabrics do not contain any deformational features,whereas others record the same structural regime as the Oligocene-middle Miocene sedimentary rocks.We infer that variations in the intensity of the deformation promoted late Miocene local fault reactivations that,in contrast to the Oligocene-middle Miocene deformational events,did not affect the entire AmagáBasin.Age differences among the studied sections can also explain the different deformational patterns identified in the basin.Both interpretations suggest that the most significant collisional events of the Panama-ChocóBlock occurred in the Oligocene-middle Miocene,whereas the formation of the Combia Volcanic Province may have either followed or coincided with the latest stages of the accretion.
基金supported by Major Science and Technology Projects in Fujian Province,China(No.2023HZ021005)State Key Laboratory of Powder Metallurgy,Central South University,ChinaFujian Key Laboratory of Rare-earth Functional Materials,China。
文摘Additive manufacturing(AM)technology has emerged as a viable solution for manufacturing complexshaped WC−Co cemented carbide products,thereby expanding their applications in industries such as resource mining,equipment manufacturing,and electronic information.This review provides a comprehensive summary of the progress of AM technology in WC−Co cemented carbides.The fundamental principles and classification of AM techniques are introduced,followed by a categorization and evaluation of the AM techniques for WC−Co cemented carbides.These techniques are classified as either direct AM technology(DAM)or indirect AM technology(IDAM),depending on their inclusion of post-processes like de-binding and sintering.Through an analysis of microstructure features,the most suitable AM route for WC−Co cemented carbide products with controllable microstructure is identified as the indirect AM technology,such as binder jet printing(BJP),which integrates AM with conventional powder metallurgy.
基金This work is part of the‘Intelligent and Cyber-Secure Platform for Adaptive Optimization in the Simultaneous Operation of Heterogeneous Autonomous Robots(PICRAH4.0)’with reference MIG-20232082,funded by MCIN/AEI/10.13039/501100011033supported by the Universidad Internacional de La Rioja(UNIR)through the Precompetitive Research Project entitled“Nuevos Horizontes en Internet de las Cosas y NewSpace(NEWIOT)”,reference PP-2024-13,funded under the 2024 Call for Research Projects.
文摘This work evaluates an architecture for decentralized authentication of Internet of Things(IoT)devices in Low Earth Orbit(LEO)satellite networks using IOTA Identity technology.To the best of our knowledge,it is the first proposal to integrate IOTA’s Directed Acyclic Graph(DAG)-based identity framework into satellite IoT environments,enabling lightweight and distributed authentication under intermittent connectivity.The system leverages Decentralized Identifiers(DIDs)and Verifiable Credentials(VCs)over the Tangle,eliminating the need for mining and sequential blocks.An identity management workflow is implemented that supports the creation,validation,deactivation,and reactivation of IoT devices,and is experimentally validated on the Shimmer Testnet.Three metrics are defined and measured:resolution time,deactivation time,and reactivation time.To improve robustness,an algorithmic optimization is introduced that minimizes communication overhead and reduces latency during deactivation.The experimental results are compared with orbital simulations of satellite revisit times to assess operational feasibility.Unlike blockchain-based approaches,which typically suffer from high confirmation delays and scalability constraints,the proposed DAG architecture provides fast,cost-free operations suitable for resource-constrained IoT devices.The results show that authentication can be efficiently performed within satellite connectivity windows,positioning IOTA Identity as a viable solution for secure and scalable IoT authentication in LEO satellite networks.
基金supported by Key R&D Program of Shandong Province,China(No.2025CXGC010407).
文摘Electromagnetic interference(EMI)shielding materials principally attain shielding by reflecting electromagnetic waves through impedance mismatch caused by high conductivity,which inevitably leads to secondary electromagnetic wave pollution.Consequently,the development of multifunctional,low-reflection electromagnetic shielding materials remains a significant challenge.Materials that are lightweight,possess high mechanical strength,exhibit excellent electromagnetic shielding absorption,and demonstrate low reflectivity have historically been the focus of significant interest.Natural silk,lightweight and strong,is an ideal composite matrix.Regenerated silk fibroin(RSF)synthesized via a bottom-up approach and cross-linked with polyvinyl alcohol(PVA)forms an aerogel matrix with remarkable compressive strength.In accordance with the principle of integrating functional design with structural design,spherical NiFe_(2)O_(4)particles were grown on the MXene surface via electrostatic self-assembly and combined with RSF/PVA as the aerogel absorptive layer,while RSF/PVA/MXene served as the reflective layer.A vertically oriented structure of Janus aerogel was prepared through sequential directed freezing.The resulting aerogel with 0.058 g/cm^(3) reveals the high compression strength(3.52 MPa).Reasonable functional and structural design enables aerogel to effectively dissipate incident electromagnetic waves through absorption,reflection,and reabsorption processes,achieving an average SET value of 48.05±1.75 dB and reaching a minimum reflection coefficient of 0.19.Furthermore,the aerogel displays remarkable infrared stealth capabilities.This lightweight,rigid,multifunctional aerogel is poised to play a significant role in the field of next-generation electronic devices.
基金funded by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation):project ID 431549029-SFB 1451the Marga-und-Walter-Boll-Stiftung(#210-10-15)(to MAR)a stipend from the'Gerok Program'(Faculty of Medicine,University of Cologne,Germany)。
文摘Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation.
基金financially supported by the National Natural Science Foundation of China(No.52073214)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008).
文摘The operational efficiency of membrane electrode assemblies in direct liquid fuel cells is critically dependent on the fuel purity in the anode compartment.To address the inherent challenge of fuel mixing problem in alcohol systems,we propose a rational catalyst design strategy focusing on morphological and compositional optimization.Sodium borohydride-derived PtCuMo alloy aerogels(AA)exhibit abundant grain boundary defects,while solvothermally prepared nanowire arrays(NA)maintain excellent single-crystalline characteristics.Density functional theory calculations demonstrate that engineered grain boundaries can effectively broaden the adsorption energy window for key reaction intermediates,enabling superior adaptability to diverse catalytic pathways.By precisely controlling Cu content,we identified Pt_(3)Cu_(3)Mo_(0.5)AA as the optimal catalyst configuration,demonstrating 150% enhancement in methanol oxidation reaction activity compared to Pt_(3)Cu_(6)Mo_(0.5)NA(1.5 vs.0.6 A·mg_(Pt)^(-1))and 17% improvement in ethanol oxidation reaction performance versus Pt_(3)Cu_(1)Mo_(0.5)NA(0.82 vs.0.70 A·mg_(Pt)^(-1)).Practical application testing using gas diffusion electrodes(anode loading:0.85 mg_(Pt)·cm^(-2))achieved a mass-specific power density of 14.14 W·g_(Pt)^(-1)in 1:1 methanol/ethanol blends,representing a 3.5-fold improvement over commercial Pt/C benchmarks.This work establishes a fundamental framework for developing highperformance,broad-spectrum electrocatalysts in advanced fuel cell systems.
基金supported by the National Natural Science Foundation of China (Grant Nos.92580120 and 52471188)。
文摘Optimizing the microchannel design of the next generation of chips requires an understanding of the in situ property evolution of the chip-based materials under fast cooling.This work overcomes the conventional reliance on reheating data of melt-quenched glasses by demonstrating direct observations of glass transition on cooling curves utilizing the most advanced fast differential scanning calorimetry.By leveraging an MEMS chip sensor that allows for rapid heat extraction from microgram-sized samples to a purged gas coolant,the device is able to reach ultra-fast cooling rates of up to 40,000 K·s^(−1).Four thermal regions are identified by examining the cooling behaviors of two metallic glasses.This is because the actual rate of the specimen can differ from the programmed rate,especially at high set rate when the actual rate decreases before the glass transition is completed.We define the operational window for reliable cooling curve analysis,build models with empirical and theoretical analyses to determine the maximum feasible cooling rate,and demonstrate how optimizing sample mass and environment temperature broaden this window.The method avoids deceptive structural relaxation effects verified by fictivetemperature analysis and permits the capture of full glass transition during cooling.
基金supported by the National Natural Science Foundation of China (Grant No.12274131)the Innovation Program for Quantum Science and Technology (Grant No.2024ZD0300101)。
文摘Optical non-reciprocity is a fundamental phenomenon in photonics.It is crucial for developing devices that rely on directional signal control,such as optical isolators and circulators.However,most research in this field has focused on systems in equilibrium or steady states.In this work,we demonstrate a room-temperature Rydberg atomic platform where the unidirectional propagation of light acts as a switch to mediate time-crystalline-like collective oscillations through atomic synchronization.
基金supported by the National Natural Science Foundation of China(22209006,21935001)the Natural Science Foundation of Shandong Province(ZR2022QE009)+1 种基金Fundamental Research Funds for the Central Universities(buctrc202307)the Beijing Natural Science Foundation(Z210016).
文摘Low-cost and high-safety aqueous Zn-I_(2) batteries attract extensive attention for large-scale energy storage systems.However,polyiodide shuttling and sluggish iodine conversion reactions lead to inferior rate capability and severe capacity decay.Herein,a three-dimensional polyaniline is wrapped by carboxylcarbon nanotubes(denoted as C-PANI)which is designed as a catalytic cathode to effectively boost iodine conversion with suppressed polyiodide shuttling,thereby improving Zn-I_(2) batteries.Specifically,carboxyl-carbon nanotubes serve as a proton reservoir for more protonated-NH+=sites in PANI chains,achieving a direct I0/I−reaction for suppressed polyiodide generation and Zn corrosion.Attributing to this“proton-iodine”regulation,catalytic protonated C-PANI strongly fixes electrolytic iodine species and stores proton ions simultaneously through reversible-N=/-NH^(+)-reaction.Therefore,the electrolytic Zn-I_(2) battery with C-PANI cathode exhibits an impressive capacity of 420 mAh g^(−1) and ultra-long lifespan over 40,000 cycles.Additionally,a 60 mAh pouch cell was assembled with excellent cycling stability after 100 cycles,providing new insights into exploring effective organocatalysts for superb Zn-halogen batteries.