期刊文献+
共找到1,746篇文章
< 1 2 88 >
每页显示 20 50 100
GaN-based blue laser diodes with output power of 5 W and lifetime over 20000 h aged at 60℃
1
作者 Lei Hu Siyi Huang +6 位作者 Zhi Liu Tengfeng Duan Si Wu Dan Wang Hui Yang Jun Wang Jianping Liu 《Journal of Semiconductors》 2025年第4期9-11,共3页
Stimulated emission and lasing of GaN-based laser diodes(LDs)were reported at 1995[1]and 1996[2],right after the breakthrough of p-type doping[3−5],material quality[6]and the invention of high-brightness GaN-based LED... Stimulated emission and lasing of GaN-based laser diodes(LDs)were reported at 1995[1]and 1996[2],right after the breakthrough of p-type doping[3−5],material quality[6]and the invention of high-brightness GaN-based LEDs[7,8].However,it took much longer time for GaN-based LDs to achieve high power,high wall plug efficiency,and long lifetime.Until 2019,Nichia reported blue LDs with these performances[9],which open wide applications with GaN-based blue LDs. 展开更多
关键词 Blue laser diodes P type doping LIFETIME Output power Stimulated emission GAN based laser diodes stimulated emission lasing laser diodes lds
在线阅读 下载PDF
Efficient Perovskite Quantum Dots Light-emitting Diodes:Challenges and Optimization 被引量:2
2
作者 LI Mengjiao WANG Ye +1 位作者 WANG Yakun LIAO Liangsheng 《发光学报》 北大核心 2025年第3期452-461,共10页
Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel... Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs. 展开更多
关键词 perovskite quantum dot light-emitting diodes(Pe-QLEDs) PHOTOLUMINESCENCE DEFECTS ion migration
在线阅读 下载PDF
Impact of Oxygen Vacancy on Performance of Amorphous InGaZnO Based Schottky Barrier Diode 被引量:1
3
作者 JIA Bin TONG Xiaowen +3 位作者 HAN Zikang QIN Ming WANG Lifeng HUANG Xiaodong 《发光学报》 北大核心 2025年第3期412-420,共9页
Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hin... Rectifying circuit,as a crucial component for converting alternating current into direct current,plays a pivotal role in energy harvesting microsystems.Traditional silicon-based or germanium-based rectifier diodes hinder system integration due to their specific manufacturing processes.Conversely,metal oxide diodes,with their simple fabrication techniques,offer advantages for system integration.The oxygen vacancy defect of oxide semiconductor will greatly affect the electrical performance of the device,so the performance of the diode can be effectively controlled by adjusting the oxygen vacancy concentration.This study centers on optimizing the performance of diodes by modulating the oxygen vacancy concentration within InGaZnO films through control of oxygen flows during the sputtering process.Experimental results demonstrate that the diode exhibits a forward current density of 43.82 A·cm^(−2),with a rectification ratio of 6.94×10^(4),efficiently rectifying input sine signals with 1 kHz frequency and 5 V magnitude.These results demonstrate its potential in energy conversion and management.By adjusting the oxygen vacancy,a methodology is provided for optimizing the performance of rectifying diodes. 展开更多
关键词 INGAZNO Schottky barrier diode oxygen vacancy rectifying performance
在线阅读 下载PDF
Size matters:quantum confinement-driven dynamics in CsPbI_(3)quantum dot light-emitting diodes 被引量:1
4
作者 Shuo Li Wenxu Yin +1 位作者 Weitao Zheng Xiaoyu Zhang 《Journal of Semiconductors》 2025年第4期55-61,共7页
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga... The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices. 展开更多
关键词 quantum confinement effect CsPbI_(3) quantum dot light-emitting diode
在线阅读 下载PDF
Effect of GaInP and GaAsP inserted into waveguide/barrier interface on carrier leakage in InAlGaAs quantum well 808-nm laser diode
5
作者 FU Meng-jie DONG Hai-liang +3 位作者 JIA Zhi-gang JIA Wei LIANG Jian XU Bing-she 《中国光学(中英文)》 北大核心 2025年第1期186-197,共12页
There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresse... There is nonradiative recombination in waveguide region owing to severe carrier leakage,which in turn reduces output power and wall-plug efficiency.In this paper,we designed a novel epitaxial structure,which suppresses carrier leakage by inserting n-Ga_(0.55)In_(0.45)P and p-GaAs_(0.6)P_(0.4) between barriers and waveguide layers,respectively,to modulate the energy band structure and to increase the height of barrier.The results show that the leakage current density reduces by 87.71%,compared to traditional structure.The nonradiative recombination current density of novel structure reduces to 37.411 A/cm^(2),and the output power reaches 12.80 W with wall-plug efficiency of 78.24%at an injection current density 5 A/cm^(2) at room temperature.In addition,the temperature drift coefficient of center wavelength is 0.206 nm/℃at the temperature range from 5℃to 65℃,and the slope of fitted straight line of threshold current with temperature variation is 0.00113.The novel epitaxial structure provides a theoretical basis for achieving high-power laser diode. 展开更多
关键词 808-nm laser diode Ga_(0.55)In_(0.45)P and GaAs_(0.6)P_(0.4)insertion layers InAlGaAs quantum well carrier leakage
在线阅读 下载PDF
Parameters Estimation of Modified Triple Diode Model of PSCs Considering Charge Accumulations and Electric Field Effects Using Puma Optimizer
6
作者 Amlak Abaza Ragab A.El-Sehiemy +1 位作者 Mona Gafar Ahmed Bayoumi 《Computer Modeling in Engineering & Sciences》 2025年第4期723-745,共23页
Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution g... Promoting the high penetration of renewable energies like photovoltaic(PV)systems has become an urgent issue for expanding modern power grids and has accomplished several challenges compared to existing distribution grids.This study measures the effectiveness of the Puma optimizer(PO)algorithm in parameter estimation of PSC(perovskite solar cells)dynamic models with hysteresis consideration considering the electric field effects on operation.The models used in this study will incorporate hysteresis effects to capture the time-dependent behavior of PSCs accurately.The PO optimizes the proposed modified triple diode model(TDM)with a variable voltage capacitor and resistances(VVCARs)considering the hysteresis behavior.The suggested PO algorithm contrasts with other wellknown optimizers from the literature to demonstrate its superiority.The results emphasize that the PO realizes a lower RMSE(Root mean square errors),which proves its capability and efficacy in parameter extraction for the models.The statistical results emphasize the efficiency and supremacy of the proposed PO compared to the other well-known competing optimizers.The convergence rates show good,fast,and stable convergence rates with lower RMSE via PO compared to the other five competitive optimizers.Moreover,the lowermean realized via the PO optimizer is illustrated by the box plot for all optimizers. 展开更多
关键词 Dynamic model of PSCs puma optimizer parameter estimation triple diode model
在线阅读 下载PDF
Ionic diode films with asymmetric polyelectrolyte interfaces for moisture-electromagnetic coupled energy harvesting
7
作者 Guangtao Zan Shengyou Li Kaiying Zhao 《Chinese Journal of Structural Chemistry》 2025年第8期1-3,共3页
Moisture-enabled electricity generation(MEG)has emerged as a promising sustainable energy harvesting technology,comparable to photovoltaics,thermoelectrics,and triboelectrics[1].MEGs generate electricity by converting... Moisture-enabled electricity generation(MEG)has emerged as a promising sustainable energy harvesting technology,comparable to photovoltaics,thermoelectrics,and triboelectrics[1].MEGs generate electricity by converting the chemical potential of moisture into electric energy through interactions with hygroscopic materials and nanostructured interfaces.Unlike solar or thermal harvesters,MEGs operate continuously by utilizing ubiquitous atmospheric moisture,granting them unique spatial and temporal adaptability.Despite nearly a decade of progress and the exploration of diverse material systems for MEG,the overall output power remains significantly limited due to inherently low charge carrier concentrations and restricted ion diffusion fluxes[2].As a result,standalone MEG devices often deliver low and unstable output,limiting practical applications.To enhance performance and versatility,recent efforts have explored hybridization of MEG with other ambient energy sources such as triboelectric or thermoelectric effects. 展开更多
关键词 nanostructured interfacesunlike ion diffusion fluxes converting chemical potential moisture electric energy moisture electromagnetic coupled energy harvesting charge carrier concentrations hygroscopic materials ion diode films asymmetric polyelectrolyte interfaces
原文传递
Eco-friendly quantum-dot light-emitting diode display technologies:prospects and challenges
8
作者 Peili Gao Chan Li +4 位作者 Hao Zhou Songhua He Zhen Yin Kar Wei Ng Shuangpeng Wang 《Opto-Electronic Science》 2025年第6期11-33,共23页
Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancement... Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays. 展开更多
关键词 quantum dots ECO-FRIENDLY light-emitting diodes degradation mechanisms DISPLAYS
在线阅读 下载PDF
Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots
9
作者 Yuan Liu Boyang Wang +2 位作者 Yaxin Li Weidong Li Siyu Lu 《Chinese Chemical Letters》 2025年第2期173-178,共6页
Carbon dots(CDs),due to their low cost,high stability,and high luminous efficiency,have emerged as an excellent material for the emissive layer in next-generation electroluminescent light-emitting diodes(ELEDs).Howeve... Carbon dots(CDs),due to their low cost,high stability,and high luminous efficiency,have emerged as an excellent material for the emissive layer in next-generation electroluminescent light-emitting diodes(ELEDs).However,improving the efficiency of fluorescent CDs-based ELEDs remains challenging,primarily because it is difficult to utilize triplet excitons in the electroluminescence process.Therefore,enhancing the exciton utilization efficiency of CDs during electroluminescence is crucial.Based on this,we exploited the characteristic large exciton binding energy commonly found in CDs to develop exciton-emitting CDs.These CDs facilitate the radiative recombination of excitons during electroluminescence,thereby improving the electroluminescent efficiency.By rationally selecting precursors,we developed high quantum efficiency CDs and subsequently constructed CDs-based ELEDs.The blue-light device exhibited an external quantum efficiency of over 4%.This study introduces a novel design concept for CDs,providing a new strategy for developing high-performance blue ELEDs based on CDs. 展开更多
关键词 Carbon dots ELECTROLUMINESCENCE Controllable preparation Exciton emission Light-emitting diodes
原文传递
GaN diodes comparative study for high energy protons detection
10
作者 Matilde Siviero Maxime Hugues +6 位作者 Lucas Lesourd Eric Frayssinet Shirley Prado de la Cruz Sebastien Chenot Johan-Petter Hofverberg Marie Vidal Jean-Yves Duboz 《Journal of Semiconductors》 2025年第9期63-69,共7页
GaN diodes for high energy(64.8 MeV)proton detection were fabricated and investigated.A comparison of the performance of GaN diodes with different structures is presented,with a focus on sapphire and on GaN substrates... GaN diodes for high energy(64.8 MeV)proton detection were fabricated and investigated.A comparison of the performance of GaN diodes with different structures is presented,with a focus on sapphire and on GaN substrates,Schottky and pin diodes,and different active layer thicknesses.Pin diodes fabricated on a sapphire substrate are the best choice for a GaN proton detector working at 0 V bias.They are sensitive(minimum detectable proton beam<1 pA/cm^(2)),linear as a function of proton current and fast(<1 s).High proton current sensitivity and high spatial resolution of GaN diodes can be exploited in the future for proton imaging of patients in proton therapy. 展开更多
关键词 gallium nitride diodeS proton irradiation proton detectors
在线阅读 下载PDF
Machine learning models for optimization, validation, and prediction of light emitting diodes with kinetin based basal medium for in vitro regeneration of upland cotton (Gossypium hirsutum L.)
11
作者 ÖZKAT Gözde Yalçın AASIM Muhammad +2 位作者 BAKHSH Allah ALI Seyid Amjad ÖZCAN Sebahattin 《Journal of Cotton Research》 2025年第2期228-241,共14页
Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is inf... Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency. 展开更多
关键词 Machine learning COTTON In vitro regeneration Light emitting diodes OPTIMIZATION KINETIN
在线阅读 下载PDF
Physics-Informed Gaussian Process Regression with Bayesian Optimization for Laser Welding Quality Control in Coaxial Laser Diodes
12
作者 Ziyang Wang Lian Duan +2 位作者 Lei Kuang Haibo Zhou Ji’an Duan 《Computers, Materials & Continua》 2025年第8期2587-2604,共18页
The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise co... The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise control of process parameters to suppress optical power loss.However,the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise.To address this challenge,a physics-informed(PI)and data-driven collaboration approach for welding parameter optimization is proposed.First,thermal-fluid-solid coupling finite element method(FEM)was employed to quantify the sensitivity of welding parameters to physical characteristics,including residual stress.This analysis facilitated the identification of critical factors contributing to optical power loss.Subsequently,a Gaussian process regression(GPR)model incorporating finite element simulation prior knowledge was constructed based on the selected features.By introducing physics-informed kernel(PIK)functions,stress distribution patterns were embedded into the prediction model,achieving high-precision optical power loss prediction.Finally,a Bayesian optimization(BO)algorithm with an adaptive sampling strategy was implemented for efficient parameter space exploration.Experimental results demonstrate that the proposedmethod effectively establishes explicit physical correlations between welding parameters and optical power loss.The optimized welding parameters reduced optical power loss by 34.1%,providing theoretical guidance and technical support for reliable CLD packaging. 展开更多
关键词 Coaxial laser diodes laser welding physics-informed Gaussian process regression Bayesian optimization
在线阅读 下载PDF
Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer
13
作者 Haowen Shang Yujie Yang +5 位作者 Bingjie Xue Yikai Wang Zhiyi Su Wenlong Liu Youzhi Wu Xinjun Xu 《Chinese Chemical Letters》 2025年第4期431-435,共5页
A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL compo... A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL composed of PDINN:TPBi can enhance the carrier transport capacity,reduce device impedance,and weaken fiuorescence quenching of the emitting layer.By carefully selecting an appropriate luminescent material Y5(a nonfullerene electron acceptor in organic solar cells)and precisely fine-tuning the molecular aggregation in active layer using a mixed solvent,the morphology is optimized and luminescence performance is enhanced,resulting in efficient NIR OLEDs with an emission peak at 890 nm.The experiment showcases a Y5-based near-infrared OLED with a maximum radiance of 34.9 W sr^(-1)m^(-2)and a maximum external quantum efficiency of 0.50%,which is among the highest values reported for nondoped fiuorescent NIR OLEDs with an emission peak over 850 nm. 展开更多
关键词 Near-infrared electroluminescence Organic light-emitting diodes Electron transport layer Nonfullerene acceptor Solution-processing
原文传递
Modified triphenylamine donors with shallower HOMO energy levels to construct long-wavelength TADF emitters of efficient organic light-emitting diodes
14
作者 Hao Zhuo Ming Zhang +5 位作者 Hengyuan Zhang Hui Lin Gang Yang Silu Tao Caijun Zheng Xiaohong Zhang 《Chinese Chemical Letters》 2025年第5期330-335,共6页
Triphenylamine(TPA)is the most promising donor fragment for the construction of long-wavelength thermally activated delayed fluorescence(TADF)emitters owing to its suitable dihedral angle that could enhance radiative ... Triphenylamine(TPA)is the most promising donor fragment for the construction of long-wavelength thermally activated delayed fluorescence(TADF)emitters owing to its suitable dihedral angle that could enhance radiative decay to compete with the serious non-radiative decay.However,the moderate electron-donating capacity of TPA seriously limits the selection of acceptor for constructing longwavelength TADF emitters with narrow bandgaps.To address this issue,in this work,the peripheral benzene of TPA was replaced with 1,4-benzodioxane and anisole to obtain two new electrondonating units N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N-phenyl-2,3-dihydrobenzo[b][1,4]dioxin-6-amine(TPADBO,−5.02 eV)and 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline(TPAMO,−5.00 eV),which possess much shallower highest occupied molecule orbital(HOMO)energy levels than the prototype TPA(−5.33 eV).Based on TPA and the modified TPA donor fragments,three TADF emitters were designed and synthesized,namely Py-TPA,Py-TPADBO and Py-TPAMO,with the same acceptor fragment 12-(2,6-diisopropylphenyl)pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline(Py).Among them,Py-TPAMO exhibits the highest photoluminescence quantum yield of 78.4%and the smallest singlet-triplet energy gap,which is because the introduction of anisole does not cause significant molecule deformation for the excited Py-TPAMO.And Py-TPAMO-based OLEDs successfully realize a maximum external quantum efficiency of 25.5%with the emission peak at 605 nm.This work provides a series of candidate of donor fragments for the development of efficient long-wavelength TADF emitters. 展开更多
关键词 Organic light-emitting diodes Thermally activated delayed fluorescence Long-wavelength emission Triphenylamine Shallow HOMO energy level
原文传递
Wide-bandgap and heavy-metal-free quantum dots for blue light-emitting diodes
15
作者 Xin Gu Wen-Long Fei +2 位作者 Bao-Quan Sun Ya-Kun Wang Liang-Sheng Liao 《Journal of Semiconductors》 2025年第4期13-27,共15页
Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease... Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease of solution processing.Despite significant progress in quantum dot light-emitting diodes(QLEDs)technology since its inception in 1994,blue QLEDs still fall short in efficiency and lifespan compared to red and green versions.The toxicity concerns associated with Cd/Pb-based quantum dots(QDs)have spurred the development of heavy-metal-free alternatives,such as groupⅡ−Ⅵ(e.g.,ZnSe-based QDs),groupⅢ−Ⅴ(e.g.,InP,GaN QDs),and carbon dots(CDs).In this review,we discuss the key properties and development history of quantum dots(QDs),various synthesis approaches,the role of surface ligands,and important considerations in developing core/shell(C/S)structured QDs.Additionally,we provide an outlook on the challenges and future directions for blue QLEDs. 展开更多
关键词 blue quantum dot light-emitting diodes heavy-metal-free Ⅱ−Ⅵquantum dots Ⅲ−Ⅴquantum dots carbon dots
在线阅读 下载PDF
Enhanced red luminescence of Ca_(3)Si_(2−x)M_(x)O_(7):Eu^(3+)(M=Al,P)phosphors via partial substitution of Si^(4+) for applications in white light-emitting diodes 被引量:3
16
作者 Yu-Hao Ma Xi Gao +3 位作者 Wen-Tao Zhang Zhen-Rui Yang Zhou Zhao Chen Qu 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期736-748,共13页
A red-emitting phosphor Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) with partial Al^(3+)/P^(5+) substitution on Si^(4+) was synthesized via a simple solid-state method,and the effects of the introduction of the M^(3+/5+)(M=Al,P)... A red-emitting phosphor Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) with partial Al^(3+)/P^(5+) substitution on Si^(4+) was synthesized via a simple solid-state method,and the effects of the introduction of the M^(3+/5+)(M=Al,P)ions on the crystal structure and photoluminescence performance of Ca_(2.91)Si_(2−x)M_(x)O_(7):0.09Eu^(3+) phosphors were investigated.The X-ray diffraction(XRD),energy-dispersive X-ray spectroscopy(EDS),and X-ray photoelectron spectroscopy(XPS)results revealed that the structure of Ca_(3)Si_(2)O_(7) remained the same after the introduction of Al^(3+) and P^(5+) ions.The characteristic emission of Eu^(3+)-doped Ca_(3)Si_(2−x)M_(x)O_(7) phosphors exhibited two main peaks at 617 nm(red)and 593 nm(orange)under excitation at 394 nm,which originated from the^(5)D_(0)→^(7)F_(2)and^(5)D_(0)→^(7)F_(1) electron transitions of Eu^(3+) ions.After the partial substitution of Al^(3+) and P^(5+),the red emission intensities of the Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) phosphors were significantly enhanced by 1.88-and 1.42-fold,respectively,which is attributed to the crystal-field effect around Eu^(3+).Meanwhile,the luminescence intensities of the Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+) and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) phosphors at 210℃ were 79.36%and 77.53%of those at 30°C,respectively,indicating their excellent thermal stability.Moreover,the as-prepared Ca_(2.91)Si_(1.96)Al_(0.04)O_(7):0.09Eu^(3+)and Ca_(2.91)Si_(1.94)P_(0.06)O_(7):0.09Eu^(3+) red-emitting phosphors were combined with a near-ultraviolet chip of 395 nm to fabricate red-light-emitting diode(LED)and white(w)-LED devices with excellent chromaticity features.In summary,Al^(3+)/P^(5+)-substituted Ca_(2.91)Si_(2)O_(7):0.09Eu^(3+) can serve as red-emitting phosphors for applications in w-LEDs. 展开更多
关键词 Ca_(3)Si_(2)O_(7) Red-emitting phosphor Structure substitution Luminescence enhancement Crystal-field effect White light-emitting diode
原文传递
Sweat-permeable electronic patches by designing threedimensional liquid diodes 被引量:2
17
作者 Kangdi Guan Di Chen +1 位作者 Qilin Hua Guozhen Shen 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期2-5,共4页
Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a sp... Wearable electronics face a significant challenge related to the limited permeability of electronic materials/devices.This issue results in sweat accumulation across the interface of the device and skin following a specific period of use[1−3].Not only does it bring about discomfort for users regarding thermos-physiology,but it also has a detrimental effect on interface adhesion and signal quality,thus hindering exact sig-nal monitoring during prolonged periods[4−6]. 展开更多
关键词 diodeS ELECTRONIC interface
在线阅读 下载PDF
Flexible perovskite light-emitting diodes for display applications and beyond 被引量:2
18
作者 Yongqi Zhang Shahbaz Ahmed Khan +1 位作者 Dongxiang Luo Guijun Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期8-25,共18页
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro... The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed. 展开更多
关键词 metal halide perovskite flexible light-emitting diodes optical properties mechanical flexibility DISPLAY
在线阅读 下载PDF
Wettability Gradient-Induced Diode:MXene-Engineered Membrane for Passive-Evaporative Cooling 被引量:1
19
作者 Leqi Lei Shuo Meng +4 位作者 Yifan Si Shuo Shi Hanbai Wu Jieqiong Yang Jinlian Hu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第8期382-397,共16页
Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water mo... Thermoregulatory textiles,leveraging high-emissivity structural materials,have arisen as a promising candidate for personal cooling management;however,their advancement has been hindered by the underperformed water moisture transportation capacity,which impacts on their thermophysiological comfort.Herein,we designed a wettability-gradient-induced-diode(WGID)membrane achieving by MXene-engineered electrospun technology,which could facilitate heat dissipation and moisture-wicking transportation.As a result,the obtained WGID membrane could obtain a cooling temperature of 1.5℃ in the“dry”state,and 7.1℃ in the“wet”state,which was ascribed to its high emissivity of 96.40%in the MIR range,superior thermal conductivity of 0.3349 W m^(-1) K^(-1)(based on radiation-and conduction-controlled mechanisms),and unidirectional moisture transportation property.The proposed design offers an approach for meticulously engineering electrospun membranes with enhanced heat dissipation and moisture transportation,thereby paving the way for developing more efficient and comfortable thermoregulatory textiles in a high-humidity microenvironment. 展开更多
关键词 Passive-evaporative cooling MXene Electrospun membrane Wettability gradient diode
在线阅读 下载PDF
Flexible planar micro supercapacitor diode 被引量:1
20
作者 Yihui Ma Pei Tang +7 位作者 Zhenyuan Miao Wuyang Tan Qijun Wang Yuecong Chen Guosheng Li Qingyun Dou Xingbin Yan Lingling Shui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期429-435,I0011,共8页
Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex process... Supercapacitor diode is a novel ion device that performs both supercapacitor energy storage and ion diode rectification functions.However,previously reported devices are limited by their large size and complex processes.In this work,we demonstrate a screen-printed micro supercapacitor diode(MCAPode)that based on the insertion of a finger mode with spinel ZnCo_(2)O_(4) as cathode and activated carbon as anode for the first time,and featuring an excellent area specific capacitance(1.21 mF cm^(-2)at 10 mV s^(-1))and high rectification characteristics(rectification ratioⅠof 11.99 at 40 mV s^(-1)).Taking advantage of the ionic gel electrolyte,which provides excellent stability during repeated flexing and at high temperatures.In addition,MCAPode exhibits excellent electrochemical performance and rectification capability in"AND"and"OR"logic gates.These findings provide practical solutions for future expansion of micro supercapacitor diode applications. 展开更多
关键词 Micro devices Supercapacitor diodes Screen-printing RECTIFICATION Logic gates
在线阅读 下载PDF
上一页 1 2 88 下一页 到第
使用帮助 返回顶部