Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant...Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.展开更多
Background:Cardiac implantable electronic devices(CIEDs)are essential for preventing sudden cardiac death in patients with cardiovascular diseases,but implantation procedures carry risks of complications such as infec...Background:Cardiac implantable electronic devices(CIEDs)are essential for preventing sudden cardiac death in patients with cardiovascular diseases,but implantation procedures carry risks of complications such as infection,hematoma,and bleeding,with incidence rates of 3–4%.Previous studies have examined individual risk factors separately,but integrated predictive models are lacking.We compared the predictive performance and interpretability of artificial neural network(ANN)and logistic regression models to evaluate their respective strengths in clinical risk assessment.Methods:This retrospective study analyzed data from 180 patients who underwent cardiac implantable electronic device(CIED)implantation in Taiwan between 2017 and 2018.To address class imbalance and enhance model training,the dataset was augmented to 540 records using the Synthetic Minority Oversampling Technique(SMOTE).A total of 13 clinical risk factors were evaluated(e.g.,age,body mass index(BMI),platelet count,left ventricular ejection fraction(LVEF),prothrombin time/international normalized ratio(PT/INR),hemoglobin(Hb),comorbidities,and antithrombotic use).Results:The most influential risk factors identified by the ANN model were platelet count,PT/INR,LVEF,Hb,and age.In the logistic regression analysis,reduced LVEF,lower hemoglobin levels,prolonged PT/INR,and lower BMI were significantly associated with an increased risk of complications.ANN model achieved a higher area under the curve(AUC=0.952)compared to the logistic regression model(AUC=0.802),indicating superior predictive performance.Additionally,the overall model quality was also higher for the ANN model(0.93)than for logistic regression(0.76).Conclusions:This study demonstrates that ANN models can effectively predict complications associated CIED procedures and identify critical preoperative risk factors.These findings support the use of ANN-based models for individualized risk stratification,enhancing procedural safety,improving patient outcomes,and potentially reducing healthcare costs associated with postoperative complications.展开更多
As a multipurpose research reactor,fission molybdenum-technetium irradiation production is one of the wide applications of China Advanced Research Reactor CARR.The goal of this study is to achieve“online loading and ...As a multipurpose research reactor,fission molybdenum-technetium irradiation production is one of the wide applications of China Advanced Research Reactor CARR.The goal of this study is to achieve“online loading and unloading”of the target during fission molybdenum-99(99Mo)to technetium-99m(99mTc)irradiation production without affecting the normal reactor operation and other irradiation channels,which will make CARR more efficient in performing irradiation tasks.This paper introduces the design principles,requirements and concept structural design of the irradiation device of fission 99Mo-99mTc.展开更多
Electronic devices capable of perceiving and responding to environmental changes are essential for applications in human-machine interaction,monitoring systems,and robotics.However,most existing devices struggle with ...Electronic devices capable of perceiving and responding to environmental changes are essential for applications in human-machine interaction,monitoring systems,and robotics.However,most existing devices struggle with the separation of sensing and actuation,resulting in complex integration and limited responsiveness.Here,inspired by the interplay between sensory and muscle cells in sea anemones,we present an intelligent thermoelectric device that seamlessly combines multimodal sensing with autonomous thermal actuation,achieving a closed-loop sensory-motor reflex.The device exhibits excellent temperature sensitivity(0.2℃)and pressure resolution(0.03 mm),attributable to its threedimensional(3D)architecture and hierarchical conductive network.Molecular dynamics simulations reveal that a dynamic hydrogen-bonding network enhances stress dissipation and interfacial adhesion,ensuring exceptional mechanical stability over 140,000 cycles.Notably,it also features thermal self-adaptation,actively triggering a protection mechanism to avoid high-temperature stimuli via thermoresponsive deformation,with an adjustable actuation threshold.This work advances intelligent electronics with real-time decision-making and environmental interaction.展开更多
Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)...Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]di-hexafluorophosphate(Bn-FPV),were synthesized.These viologen derivatives as active materials were used to assemble both flexible and rigid electrochromic devices(ECDs).ECDs based on DFPV exhibited reversible color change from colorless to deep green and ECDs based on Bn-FPV exhibited reversible color change from colorless to blue-green within applied voltage.It was found that the devices based on DFPV showed cycle stability,which could still maintain more than 90% after 1000 cycles.In addition,the modulation rate of the device to the solar irradiance is also calculated to characterize its application potential in smart windows.Among them,the rigid device(R-DFPV)based on the DFPV has a large solar irradiance modulation rate of 54.66%,which has the potential to be used as smart windows.展开更多
Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement ...Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.展开更多
Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,pie...Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,piezoelectric composites,biodegradable polymers)and conformable designs to enable stable integration with dynamic anatomical surfaces.Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration,accelerated tissue regeneration via mechanical and electrical stimulation,and precise neuromodulation using focused acoustic waves.Recent developments demonstrate wireless operation,real-time monitoring,and closed-loop therapy,facilitated by energy-efficient transducers and AI-driven adaptive control.Despite progress,challenges persist in material durability,clinical validation,and scalable manufacturing.Future directions highlight the integration of nanomaterials,3D-printed architectures,and multimodal sensing for personalized medicine.This technology holds significant potential to redefine chronic disease management,postoperative recovery,and neurorehabilitation,bridging the gap between clinical and home-based care.展开更多
Concerning the issue of high-dimensions and low-failure probabilities including implicit and highly nonlinear limit state function, reliability analysis based on the directional importance sampling in combination with...Concerning the issue of high-dimensions and low-failure probabilities including implicit and highly nonlinear limit state function, reliability analysis based on the directional importance sampling in combination with the radial basis function (RBF) neural network is used, and the RBF neural network based on first-order reliability method (FORM) is to approximate the unknown implicit limit state functions and calculate the most probable point (MPP) with iterative algorithm. For good efficiency, based on the ideas that directional sampling reduces dimensionality and importance sampling focuses on the domain contributing to failure probability, the joint probability density function of importance sampling is constructed, and the sampling center is moved to MPP to ensure that more random sample points draw belong to the failure domain and the simulation efficiency is improved. Then the numerical example of initiating explosive devices for rocket booster explosive bolts demonstrates the applicability, versatility and accuracy of the approach compared with other reliability simulation algorithm.展开更多
The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and wi...The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.展开更多
文摘Penetration testing plays a critical role in ensuring security in an increasingly interconnected world. Despite advancements in technology leading to smaller, more portable devices, penetration testing remains reliant on traditional laptops and computers, which, while portable, lack true ultra-portability. This paper explores the potential impact of developing a dedicated, ultra-portable, low-cost device for on-the-go penetration testing. Such a device could replicate the core functionalities of advanced penetration testing tools, including those found in Kali Linux, within a compact form factor that fits easily into a pocket. By offering the convenience and portability akin to a smartphone, this innovative device could redefine the way penetration testers operate, enabling them to carry essential tools wherever they go and ensuring they are always prepared to conduct security assessments efficiently. This approach aims to revolutionize penetration testing by merging high functionality with unparalleled portability.
文摘Background:Cardiac implantable electronic devices(CIEDs)are essential for preventing sudden cardiac death in patients with cardiovascular diseases,but implantation procedures carry risks of complications such as infection,hematoma,and bleeding,with incidence rates of 3–4%.Previous studies have examined individual risk factors separately,but integrated predictive models are lacking.We compared the predictive performance and interpretability of artificial neural network(ANN)and logistic regression models to evaluate their respective strengths in clinical risk assessment.Methods:This retrospective study analyzed data from 180 patients who underwent cardiac implantable electronic device(CIED)implantation in Taiwan between 2017 and 2018.To address class imbalance and enhance model training,the dataset was augmented to 540 records using the Synthetic Minority Oversampling Technique(SMOTE).A total of 13 clinical risk factors were evaluated(e.g.,age,body mass index(BMI),platelet count,left ventricular ejection fraction(LVEF),prothrombin time/international normalized ratio(PT/INR),hemoglobin(Hb),comorbidities,and antithrombotic use).Results:The most influential risk factors identified by the ANN model were platelet count,PT/INR,LVEF,Hb,and age.In the logistic regression analysis,reduced LVEF,lower hemoglobin levels,prolonged PT/INR,and lower BMI were significantly associated with an increased risk of complications.ANN model achieved a higher area under the curve(AUC=0.952)compared to the logistic regression model(AUC=0.802),indicating superior predictive performance.Additionally,the overall model quality was also higher for the ANN model(0.93)than for logistic regression(0.76).Conclusions:This study demonstrates that ANN models can effectively predict complications associated CIED procedures and identify critical preoperative risk factors.These findings support the use of ANN-based models for individualized risk stratification,enhancing procedural safety,improving patient outcomes,and potentially reducing healthcare costs associated with postoperative complications.
文摘As a multipurpose research reactor,fission molybdenum-technetium irradiation production is one of the wide applications of China Advanced Research Reactor CARR.The goal of this study is to achieve“online loading and unloading”of the target during fission molybdenum-99(99Mo)to technetium-99m(99mTc)irradiation production without affecting the normal reactor operation and other irradiation channels,which will make CARR more efficient in performing irradiation tasks.This paper introduces the design principles,requirements and concept structural design of the irradiation device of fission 99Mo-99mTc.
基金supported by the National Natural Science Foundation of China(Nos.22175164,12232016,and 12172346)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450402)+2 种基金the Youth Innovation Promotion Association CAS(No.2022465)the Fundamental Research Funds for the Central Universities(No.WK2090000087)the University of Science and Technology of China(USTC)Tang Scholar.
文摘Electronic devices capable of perceiving and responding to environmental changes are essential for applications in human-machine interaction,monitoring systems,and robotics.However,most existing devices struggle with the separation of sensing and actuation,resulting in complex integration and limited responsiveness.Here,inspired by the interplay between sensory and muscle cells in sea anemones,we present an intelligent thermoelectric device that seamlessly combines multimodal sensing with autonomous thermal actuation,achieving a closed-loop sensory-motor reflex.The device exhibits excellent temperature sensitivity(0.2℃)and pressure resolution(0.03 mm),attributable to its threedimensional(3D)architecture and hierarchical conductive network.Molecular dynamics simulations reveal that a dynamic hydrogen-bonding network enhances stress dissipation and interfacial adhesion,ensuring exceptional mechanical stability over 140,000 cycles.Notably,it also features thermal self-adaptation,actively triggering a protection mechanism to avoid high-temperature stimuli via thermoresponsive deformation,with an adjustable actuation threshold.This work advances intelligent electronics with real-time decision-making and environmental interaction.
基金Funded by the Natural Science Foundation of Guangdong(Nos.2014A030313241,2014B090901068,and 2016A010103003)。
文摘Two viologen derivatives containing fluorine substituent(F)with an asymmetric structures,1,1'-bis(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]dihexafluorophosphate(DFPV)and 1-benzyl-1'-(4-(trifluoromethyl)phenyl)-[4,4'-bipyridine]di-hexafluorophosphate(Bn-FPV),were synthesized.These viologen derivatives as active materials were used to assemble both flexible and rigid electrochromic devices(ECDs).ECDs based on DFPV exhibited reversible color change from colorless to deep green and ECDs based on Bn-FPV exhibited reversible color change from colorless to blue-green within applied voltage.It was found that the devices based on DFPV showed cycle stability,which could still maintain more than 90% after 1000 cycles.In addition,the modulation rate of the device to the solar irradiance is also calculated to characterize its application potential in smart windows.Among them,the rigid device(R-DFPV)based on the DFPV has a large solar irradiance modulation rate of 54.66%,which has the potential to be used as smart windows.
基金supported by the National Natural Science Foundation of China(No.52242305).
文摘Cement stands as a dominant contributor to global energy consumption and carbon emissions in the construction industry.With the upgrading of infrastructure and the improvement of building standards,traditional cement fails to reconcile ecological responsibility with advanced functional performance.By incorporating tailored fillers into cement matrices,the resulting composites achieve enhanced thermoelectric(TE)conversion capabilities.These materials can harness solar radiation from building envelopes and recover waste heat from indoor thermal gradients,facilitating bidirectional energy conversion.This review offers a comprehensive and timely overview of cementbased thermoelectric materials(CTEMs),integrating material design,device fabrication,and diverse applications into a holistic perspective.It summarizes recent advancements in TE performance enhancement,encompassing fillers optimization and matrices innovation.Additionally,the review consolidates fabrication strategies and performance evaluations of cement-based thermoelectric devices(CTEDs),providing detailed discussions on their roles in monitoring and protection,energy harvesting,and smart building.We also address sustainability,durability,and lifecycle considerations of CTEMs,which are essential for real-world deployment.Finally,we outline future research directions in materials design,device engineering,and scalable manufacturing to foster the practical application of CTEMs in sustainable and intelligent infrastructure.
基金the support from the start-up of the University of Missouri-Columbia。
文摘Wearable ultrasound devices represent a transformative advancement in therapeutic applications,offering noninvasive,continuous,and targeted treatment for deep tissues.These systems leverage flexible materials(e.g.,piezoelectric composites,biodegradable polymers)and conformable designs to enable stable integration with dynamic anatomical surfaces.Key innovations include ultrasound-enhanced drug delivery through cavitation-mediated transdermal penetration,accelerated tissue regeneration via mechanical and electrical stimulation,and precise neuromodulation using focused acoustic waves.Recent developments demonstrate wireless operation,real-time monitoring,and closed-loop therapy,facilitated by energy-efficient transducers and AI-driven adaptive control.Despite progress,challenges persist in material durability,clinical validation,and scalable manufacturing.Future directions highlight the integration of nanomaterials,3D-printed architectures,and multimodal sensing for personalized medicine.This technology holds significant potential to redefine chronic disease management,postoperative recovery,and neurorehabilitation,bridging the gap between clinical and home-based care.
文摘Concerning the issue of high-dimensions and low-failure probabilities including implicit and highly nonlinear limit state function, reliability analysis based on the directional importance sampling in combination with the radial basis function (RBF) neural network is used, and the RBF neural network based on first-order reliability method (FORM) is to approximate the unknown implicit limit state functions and calculate the most probable point (MPP) with iterative algorithm. For good efficiency, based on the ideas that directional sampling reduces dimensionality and importance sampling focuses on the domain contributing to failure probability, the joint probability density function of importance sampling is constructed, and the sampling center is moved to MPP to ensure that more random sample points draw belong to the failure domain and the simulation efficiency is improved. Then the numerical example of initiating explosive devices for rocket booster explosive bolts demonstrates the applicability, versatility and accuracy of the approach compared with other reliability simulation algorithm.
基金Project(51090385) supported by the Major Program of National Natural Science Foundation of ChinaProject(2011IB001) supported by Yunnan Provincial Science and Technology Program,China+1 种基金Project(2012DFA70570) supported by the International Science & Technology Cooperation Program of ChinaProject(2011IA004) supported by the Yunnan Provincial International Cooperative Program,China
文摘The control design, based on self-adaptive PID with genetic algorithms(GA) tuning on-line was investigated, for the temperature control of industrial microwave drying rotary device with the multi-layer(IMDRDWM) and with multivariable nonlinear interaction of microwave and materials. The conventional PID control strategy incorporated with optimization GA was put forward to maintain the optimum drying temperature in order to keep the moisture content below 1%, whose adaptation ability included the cost function of optimization GA according to the output change. Simulations on five different industrial process models and practical temperature process control system for selenium-enriched slag drying intensively by using IMDRDWM were carried out systematically, indicating the reliability and effectiveness of control design. The parameters of proposed control design are all on-line implemented without iterative predictive calculations, and the closed-loop system stability is guaranteed, which makes the developed scheme simpler in its synthesis and application, providing the practical guidelines for the control implementation and the parameter design.