We propose a scheme to implement the Deutsch-Jozsa algorithm by using Schroedinger cat states in cavity quantum electron-dynamics (QED). The scheme is based on the Raman interaction of a degenerate three-level A-typ...We propose a scheme to implement the Deutsch-Jozsa algorithm by using Schroedinger cat states in cavity quantum electron-dynamics (QED). The scheme is based on the Raman interaction of a degenerate three-level A-type atom with a coherent state in a cavity. By using Schroedinger cat states, the atomic spontaneous emission can be minimized and the Hadamard transformation in our scheme is not needed.展开更多
We propose a physical scheme for implementing the Deutsch-Jozsa algorithm with superconducting quantum interference devices (SQUIDs) in cavity-QED. The scheme is based on SQUID coupled to a single-mode microwave cav...We propose a physical scheme for implementing the Deutsch-Jozsa algorithm with superconducting quantum interference devices (SQUIDs) in cavity-QED. The scheme is based on SQUID coupled to a single-mode microwave cavity field or classical microwave pluses. The scheme is very simple and may be realizable experimentally.展开更多
The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stre...The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stress spectrum model is crucial for further fatigue reliability analysis.This study investigates the performance of the REBMIX algorithm in modeling both univariate(stress range)and multivariate(stress range and mean stress)distributions of the rain-flowmatrix for a steel arch bridge,usingAkaike’s Information Criterion(AIC)as a performance metric.Four types of finitemixture distributions—Normal,Lognormal,Weibull,and Gamma—are employed tomodel the stress range.Additionally,mixed distributions,including Normal-Normal,Lognormal-Normal,Weibull-Normal,and Gamma-Normal,are utilized to model the joint distribution of stress range and mean stress.The REBMIX algorithm estimates the number of components,component weights,and component parameters for each candidate finite mixture distribution.The results demonstrate that the REBMIX algorithm-based mixture parameter estimation approach effectively identifies the optimal distribution based on AIC values.Furthermore,the algorithm exhibits superior computational efficiency compared to traditional methods,making it highly suitable for practical applications.展开更多
We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one ...We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.展开更多
Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be g...Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone.展开更多
Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability...Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.展开更多
Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to impro...Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.展开更多
The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existi...The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.展开更多
The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error t...The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks.展开更多
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee...In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.展开更多
基金Project supported by the National Natural Science Foundation (Grant No 10574022), and the Funds of the Natural Science of Fuiian Province. China (Grant No Z0512006).
文摘We propose a scheme to implement the Deutsch-Jozsa algorithm by using Schroedinger cat states in cavity quantum electron-dynamics (QED). The scheme is based on the Raman interaction of a degenerate three-level A-type atom with a coherent state in a cavity. By using Schroedinger cat states, the atomic spontaneous emission can be minimized and the Hadamard transformation in our scheme is not needed.
基金National Natural Science Foundation of China under Grant No.10674001the Program of the Education Department of Anhui Province under Grant No.KJ2007A002
文摘We propose a physical scheme for implementing the Deutsch-Jozsa algorithm with superconducting quantum interference devices (SQUIDs) in cavity-QED. The scheme is based on SQUID coupled to a single-mode microwave cavity field or classical microwave pluses. The scheme is very simple and may be realizable experimentally.
基金jointly supported by the Fundamental Research Funds for the Central Universities(Grant No.xzy012023075)the Zhejiang Engineering Research Center of Intelligent Urban Infrastructure(Grant No.IUI2023-YB-12).
文摘The computational accuracy and efficiency of modeling the stress spectrum derived from bridge monitoring data significantly influence the fatigue life assessment of steel bridges.Therefore,determining the optimal stress spectrum model is crucial for further fatigue reliability analysis.This study investigates the performance of the REBMIX algorithm in modeling both univariate(stress range)and multivariate(stress range and mean stress)distributions of the rain-flowmatrix for a steel arch bridge,usingAkaike’s Information Criterion(AIC)as a performance metric.Four types of finitemixture distributions—Normal,Lognormal,Weibull,and Gamma—are employed tomodel the stress range.Additionally,mixed distributions,including Normal-Normal,Lognormal-Normal,Weibull-Normal,and Gamma-Normal,are utilized to model the joint distribution of stress range and mean stress.The REBMIX algorithm estimates the number of components,component weights,and component parameters for each candidate finite mixture distribution.The results demonstrate that the REBMIX algorithm-based mixture parameter estimation approach effectively identifies the optimal distribution based on AIC values.Furthermore,the algorithm exhibits superior computational efficiency compared to traditional methods,making it highly suitable for practical applications.
基金Project supported by the National Natural Science Foundation of China (Grant No 60667001)
文摘We propose a scheme to implement the n-qubit Deutsch-Jozsa algorithm based on resonant interaction between the atoms and a single-mode cavity. In the scheme, the resonant transitions between two ground states and one excited state of an atom are changed alternately by adjusting the cavity frequency appropriately, and the operations required to complete the algorithm can be significantly simplified following the increment of the number of qubits. The implementation of the scheme in experiment would show the full power of quantum algorithm and would be significative and important for more complicated quantum algorithm in cavity quantum electrodynamics.
基金Anhui Provincial Natural Science Found(1408085MA20)Natural Science Fund of the Education Department of Anhui Province(KJ2010A323,KJ2013A261)Research project of Lu’an city(2013LWB004)~~
基金State Natural Science Foundation (49874021).Contribution No. 01FE2002, Institute of Geophysics, China Seismological Bureau.
文摘Smooth constraint is important in linear inversion, but it is difficult to apply directly to model parameters in genetic algorithms. If the model parameters are smoothed in iteration, the diversity of models will be greatly suppressed and all the models in population will tend to equal in a few iterations, so the optimal solution meeting requirement can not be obtained. In this paper, an indirect smooth constraint technique is introduced to genetic inversion. In this method, the new models produced in iteration are smoothed, then used as theoretical models in calculation of misfit function, but in process of iteration only the original models are used in order to keep the diversity of models. The technique is effective in inversion of surface wave and receiver function. Using this technique, we invert the phase velocity of Raleigh wave in the Tibetan Plateau, revealing the horizontal variation of S wave velocity structure near the center of the Tibetan Plateau. The results show that the S wave velocity in the north is relatively lower than that in the south. For most paths there is a lower velocity zone with 12-25 km thick at the depth of 15-40 km. The lower velocity zone in upper mantle is located below the depth of 100 km, and the thickness is usually 40-80 km, but for a few paths reach to 100 km thick. Among the area of Ando, Maqi and Ushu stations, there is an obvious lower velocity zone with the lowest velocity of 4.2-4.3 km/s at the depth of 90-230 km. Based on the S wave velocity structures of different paths and former data, we infer that the subduction of the Indian Plate is delimited nearby the Yarlung Zangbo suture zone.
文摘Many classical encoding algorithms of vector quantization (VQ) of image compression that can obtain global optimal solution have computational complexity O(N). A pure quantum VQ encoding algorithm with probability of success near 100% has been proposed, that performs operations 45√N times approximately. In this paper, a hybrid quantum VQ encoding algorithm between the classical method and the quantum algorithm is presented. The number of its operations is less than √N for most images, and it is more efficient than the pure quantum algorithm.
基金Supported by National Natural Science Foundation of China(Grant No.51109094)Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Computational fluid dynamics(CFD) can give a lot of potentially very useful information for hydraulic optimization design of pumps, however, it cannot directly state what kind of modification should be made to improve such hydrodynamic performance. In this paper, a more convenient and effective approach is proposed by combined using of CFD, multi-objective genetic algorithm(MOGA) and artificial neural networks(ANN) for a double-channel pump's impeller, with maximum head and efficiency set as optimization objectives, four key geometrical parameters including inlet diameter, outlet diameter, exit width and midline wrap angle chosen as optimization parameters. Firstly, a multi-fidelity fitness assignment system in which fitness of impellers serving as training and comparison samples for ANN is evaluated by CFD, meanwhile fitness of impellers generated by MOGA is evaluated by ANN, is established and dramatically reduces the computational expense. Then, a modified MOGA optimization process, in which selection is performed independently in two sub-populations according to two optimization objectives, crossover and mutation is performed afterword in the merged population, is developed to ensure the global optimal solution to be found. Finally, Pareto optimal frontier is found after 500 steps of iterations, and two optimal design schemes are chosen according to the design requirements. The preliminary and optimal design schemes are compared, and the comparing results show that hydraulic performances of both pumps 1 and 2 are improved, with the head and efficiency of pump 1 increased by 5.7% and 5.2%, respectively in the design working conditions, meanwhile shaft power decreased in all working conditions, the head and efficiency of pump 2 increased by 11.7% and 5.9%, respectively while shaft power increased by 5.5%. Inner flow field analyses also show that the backflow phenomenon significantly diminishes at the entrance of the optimal impellers 1 and 2, both the area of vortex and intensity of vortex decreases in the whole flow channel. This paper provides a promising tool to solve the hydraulic optimization problem of pumps' impellers.
基金Supported by the National Natural Science Foundation of China(61862033,61902162)Key Project of Science and Technology Research of Department of Education of Jiangxi Province(GJJ210307)Postgraduate Innovation Fund Project of Education Department of Jiangxi Province(YC2021-S306)。
文摘The automatic algorithm programming model can increase the dependability and efficiency of algorithm program development,including specification generation,program refinement,and formal verification.However,the existing model has two flaws:incompleteness of program refinement and inadequate automation of formal verification.This paper proposes an automatic algorithm programming model based on the improved Morgan’s refinement calculus.It extends the Morgan’s refinement calculus rules and designs the C++generation system for realizing the complete process of refinement.Meanwhile,the automation tools VCG(Verification Condition Generator)and Isabelle are used to improve the automation of formal verification.An example of a stock’s maximum income demonstrates the effectiveness of the proposed model.Furthermore,the proposed model has some relevance for automatic software generation.
文摘The method of determining the structures and parameters of radial basis function neural networks(RBFNNs) using improved genetic algorithms is proposed. Akaike′s information criterion (AIC) with generalization error term is used as the best criterion of optimizing the structures and parameters of networks. It is shown from the simulation results that the method not only improves the approximation and generalization capability of RBFNNs ,but also obtain the optimal or suboptimal structures of networks.
文摘In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm.