The rapid growth and pervasive presence of the Internet of Things(IoT)have led to an unparalleled increase in IoT devices,thereby intensifying worries over IoT security.Deep learning(DL)-based intrusion detection(ID)h...The rapid growth and pervasive presence of the Internet of Things(IoT)have led to an unparalleled increase in IoT devices,thereby intensifying worries over IoT security.Deep learning(DL)-based intrusion detection(ID)has emerged as a vital method for protecting IoT environments.To rectify the deficiencies of current detection methodologies,we proposed and developed an IoT cyberattacks detection system(IoT-CDS)based on DL models for detecting bot attacks in IoT networks.The DL models—long short-term memory(LSTM),gated recurrent units(GRUs),and convolutional neural network-LSTM(CNN-LSTM)were suggested to detect and classify IoT attacks.The BoT-IoT dataset was used to examine the proposed IoT-CDS system,and the dataset includes six attacks with normal packets.The experiments conducted on the BoT-IoT network dataset reveal that the LSTM model attained an impressive accuracy rate of 99.99%.Compared with other internal and external methods using the same dataset,it is observed that the LSTM model achieved higher accuracy rates.LSTMs are more efficient than GRUs and CNN-LSTMs in real-time performance and resource efficiency for cyberattack detection.This method,without feature selection,demonstrates advantages in training time and detection accuracy.Consequently,the proposed approach can be extended to improve the security of various IoT applications,representing a significant contribution to IoT security.展开更多
In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical mo...In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.展开更多
A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP...A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.展开更多
Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection syste...Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.展开更多
This paper is concerned with a high characteristic image processing and recognition system that is used for inspecting real-time blemishes, streaks and cracks on the inner walls of high accuracy pipes. As a regular de...This paper is concerned with a high characteristic image processing and recognition system that is used for inspecting real-time blemishes, streaks and cracks on the inner walls of high accuracy pipes. As a regular detector, the BP neural network is used for extracting features of the image inspected and classifying these images, it takes fully advantage of the function of artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerant ability and so forth. Besides, an improved BP algorithm is used in the system for training the network, and making the learning procedure of the net converges to the minimum of overall situation at high rate.展开更多
Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whol...Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in parallel confocal detecting. Conclusion The equipment needn't mechanical rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.展开更多
Using arylhydrocarbon hydroxylase (AHH),ethoxyre-sorufin-O-deethylase,ethoxycoumarin-O-deethylase andaminopyrine-N-demethylase as marker enzymes and 3-methylcholanthrene (3-MC),-naphthof1avon,norepine-phrine (NE) and ...Using arylhydrocarbon hydroxylase (AHH),ethoxyre-sorufin-O-deethylase,ethoxycoumarin-O-deethylase andaminopyrine-N-demethylase as marker enzymes and 3-methylcholanthrene (3-MC),-naphthof1avon,norepine-phrine (NE) and phenobarbita1 as inducers,it is con-firmed that there are inducib1e Cyt P450 IA and展开更多
A handwriting detecting system based on Micro- accelerometer and Micro-gyros is proposed. And the algorithm of the detecting system is also described in detail. And the error analysis of the detecting system is also d...A handwriting detecting system based on Micro- accelerometer and Micro-gyros is proposed. And the algorithm of the detecting system is also described in detail. And the error analysis of the detecting system is also described in de-tail. The motion contrail of the handwriting de-tecting in the 3-D space can be recognized through compute the matrix of attitude angles and the dynamic information of the handwriting detecting which is mapped on the 2-D plane. Then the information of contrail can be recurred on the writing plane by integral. There were good results in the actual experiment.展开更多
Compared with the traditional scanning confocal microscopy, the effect of various factors on characteristic in multi-beam parallel confocal system is discussed, the error factors in multi-beam parallel confocal system...Compared with the traditional scanning confocal microscopy, the effect of various factors on characteristic in multi-beam parallel confocal system is discussed, the error factors in multi-beam parallel confocal system are analyzed. The factors influencing the characteristics of the multi-beam parallel confocal system are discussed. The construction and working principle of the non-scanning 3D detecting system is introduced, and some experiment results prove the effect of various factors on the detecting system.展开更多
In this paper,a non-invasive detecting system for measuring blood flow parame-ters of cardiovascular system is described.The device employs a new unique methodwhich is based on the theory of hemodynamics,ordinary meas...In this paper,a non-invasive detecting system for measuring blood flow parame-ters of cardiovascular system is described.The device employs a new unique methodwhich is based on the theory of hemodynamics,ordinary measurement of blood pres-sure and pulse information of variation of pulse contour parameter Ko The sphygmo-gram is picked up from radial artery via sensor.As the blood pressure changes。展开更多
Indoor organization user activity’s (UA) direction detection monitoring system and also emergency prediction are major challenging tasks in the field of the typical body sensor and indoor fixed sensor networks. ...Indoor organization user activity’s (UA) direction detection monitoring system and also emergency prediction are major challenging tasks in the field of the typical body sensor and indoor fixed sensor networks. In this paper, indoor UA based direction detection monitoring system is achieved by the combination of both the orientation sensor and Bluetooth Low Energy (BLE) in user’s smartphones belonging to the Internet of Things (IoT). The orientation sensor senses the actual orientation of the user and BLE transmits the sensed BLE signals to monitoring system using star topology in IoT. In monitoring system, classification algorithm is used to identify the directions of the smartphone users. The emergency situation of the user is also predicted based on signal variation instantly in real time. The user activity’s signals are captured using LabVIEW toolkit then applied to various classification algorithms such asRF—91.42%, Ibk—90.55%, j48— 85.61%, K*—73.54% are the results obtained. An average of 85% was obtained in all the classifi- cation algorithims indicating the consistency and accuracy in detecting the directions of the users. RF was found to be the best among all the classification algorithms. IoT enabled devices have high demand in near coming future, moreover smartphones users increase day by day, hence implementing and maintaining the above said system would be much easier and cheaper compared to other conventional networks.展开更多
BACKGROUND Diagnosing bacterial infections(BI)in patients with cirrhosis can be challenging because of unclear symptoms,low diagnostic accuracy,and lengthy culture testing times.Various biomarkers have been studied,in...BACKGROUND Diagnosing bacterial infections(BI)in patients with cirrhosis can be challenging because of unclear symptoms,low diagnostic accuracy,and lengthy culture testing times.Various biomarkers have been studied,including serum procal-citonin(PCT)and presepsin.However,the diagnostic performance of these markers remains unclear,requiring further informative studies to ascertain their diagnostic value.AIM To evaluate the pooled diagnostic performance of PCT and presepsin in detecting BI among patients with cirrhosis.INTRODUCTION Bacterial infections(BI)commonly occur in patients with cirrhosis,resulting in poor outcomes,including the development of cirrhotic complications,septic shock,acute-on-chronic liver failure(ACLF),multiple organ failures,and mortality[1,2].BI is observed in 20%-30%of hospitalized patients,with and without ACLF[3].Patients with cirrhosis are susceptible to BI because of internal and external factors.The major internal factors are changes in gut microbial composition and function,bacterial translocation,and cirrhosis-associated immune dysfunction syndrome[4,5].External factors include alcohol use,proton-pump inhibitor use,frailty,readmission,and invasive procedures.Spontaneous bacterial peritonitis(SBP),urinary tract infection,pneumonia,and primary bacteremia are the common BIs in hospit-alized patients with cirrhosis[6].Early diagnosis and adequate empirical antibiotic therapy are two critical factors that improve the prognosis of BI in patients with cirrhosis.However,early detection of BI in cirrhosis is challenging due to subtle clinical signs and symptoms,low sensitivity and specificity of systemic inflammatory response syndrome criteria,and low sensitivity of bacterial cultures.Thus,effective biomarkers need to be identified for the early detection of BI.Several biomarkers have been evaluated,but their efficacy in detecting BI is unclear.Procalcitonin(PCT)is a precursor of the hormone calcitonin,which is secreted by parafollicular cells of the thyroid gland[7].In the presence of BI,PCT gene expression increases in extrathyroidal tissues,causing a subsequent increase in serum PCT level[8].Changes in serum PCT are detectable as early as 4 hours after infection onset and peaks between 8 and 24 hours,making it a valuable diagnostic biomarker for BI.Several studies have demonstrated the favorable diagnostic accuracy of PCT in the diagnosis of BI in individuals with cirrhosis[9-13]and without cirrhosis[14-16].Since 2014,two meta-analyses have been published on the diagnostic value of PCT for SBP and BI in patients with cirrhosis[17,18].Other related studies have been conducted since then[10-12,19-33].Serum presepsin has recently emerged as a promising biomarker for diagnosing BI.This biomarker is the N-terminal fraction protein of the soluble CD14 g-negative bacterial lipopolysaccharide–lipopolysaccharide binding protein(sCD14-LPS-LBP)complex,which is cleaved by inflammatory serum protease in response to BI[34].Presepsin levels increase within 2 hours and peaks in 3 hours[35].This is useful for detecting BI since presepsin levels increase earlier than serum Our systematic review and meta-analysis was performed with adherence to PRISMA guidelines[37].展开更多
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl...Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.展开更多
OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulati...OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulations,and De Qi sensation detection.The OptiTrack motion capture system is used to locate acupoints,which are then translated into coordinates in the robot control system.A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision.In addition,a De Qi sensation detection system is proposed to evaluate the effect of acupuncture.To verify the stability of the designed acupuncture robot,acupoints'coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.RESULTS:Through repeated experiments for eight acupoints,the acupuncture robot achieved a positioning error within 3.3 mm,which is within the allowable range of needle extraction and acupoint insertion.During needle insertion,the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°.The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm,which is within the recommended depth range for the Xingzhen operation.In addition,the average detection accuracy of the De Qi keywords is 94.52%,which meets the requirements of acupuncture effect testing for different dialects.CONCLUSION:The proposed acupuncture robot system streamlines the acupuncture process,increases efficiency,and reduces practitioner fatigue,while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects.The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.展开更多
Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges ...Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases.展开更多
This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA f...This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.展开更多
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by...The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.展开更多
At an age when most teens are figuring out high school,Siddharth is already shaping the future of medical tech.The 14⁃year⁃old boy from Dallas has created an AI⁃powered app,Circadian AI,capable of detecting heart dise...At an age when most teens are figuring out high school,Siddharth is already shaping the future of medical tech.The 14⁃year⁃old boy from Dallas has created an AI⁃powered app,Circadian AI,capable of detecting heart disease in just 7 seconds using only a smartphone's microphone.展开更多
The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe op...The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.展开更多
Objective:To assess aptamer-based assays for diagnosing latent tuberculosis infection(LTBI).Methods:Literature from Medline,ScienceDirect,and Scopus,covering publications from January 1,2012,to December 31,2023,was ex...Objective:To assess aptamer-based assays for diagnosing latent tuberculosis infection(LTBI).Methods:Literature from Medline,ScienceDirect,and Scopus,covering publications from January 1,2012,to December 31,2023,was examined.This review evaluates different aptamers,biomarkers,sample types,sample sizes,reference assays,and the assays'sensitivity and specificity.By using the Quality Assessment of Diagnostic Accuracy Studies 2,the risk of bias in each study was evaluated.Results:Aptamer-based assays generally showed a sensitivity of 90%(95%CI:75%-100%)and specificity of 90%(95%CI:50%-100%),where optical aptasensor showed the highest sensitivity and specificity at 100%.Serum samples were frequently used to enhance antigen detectability,improving the assay’s performance.Meanwhile,HspX was the most studied biomarker,followed by MPT64,and IFN-γ.Conclusions:Aptamer-based assays could be reliable alternatives to current LTBI detection methods,but further research is needed to validate their clinical efficacy.展开更多
文摘The rapid growth and pervasive presence of the Internet of Things(IoT)have led to an unparalleled increase in IoT devices,thereby intensifying worries over IoT security.Deep learning(DL)-based intrusion detection(ID)has emerged as a vital method for protecting IoT environments.To rectify the deficiencies of current detection methodologies,we proposed and developed an IoT cyberattacks detection system(IoT-CDS)based on DL models for detecting bot attacks in IoT networks.The DL models—long short-term memory(LSTM),gated recurrent units(GRUs),and convolutional neural network-LSTM(CNN-LSTM)were suggested to detect and classify IoT attacks.The BoT-IoT dataset was used to examine the proposed IoT-CDS system,and the dataset includes six attacks with normal packets.The experiments conducted on the BoT-IoT network dataset reveal that the LSTM model attained an impressive accuracy rate of 99.99%.Compared with other internal and external methods using the same dataset,it is observed that the LSTM model achieved higher accuracy rates.LSTMs are more efficient than GRUs and CNN-LSTMs in real-time performance and resource efficiency for cyberattack detection.This method,without feature selection,demonstrates advantages in training time and detection accuracy.Consequently,the proposed approach can be extended to improve the security of various IoT applications,representing a significant contribution to IoT security.
基金supported by the National Natural Science Foundation of China(No.51605465)
文摘In this paper, in order to design a fast steering mirror(FSM) with large deflection angle and high linearity, a deflection angle detecting system(DADS) using quadrant detector(QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.
基金Foundation item: Project(2009AA04Z143) supported by the National High Technology Research and Development Program of ChinaProject (E2011203004) supported by Natural Science Foundation of Hebei Province, ChinaProjects(2011BAF15B03, 2011BAF15B02) supported by the National Science Plan of China
文摘A high-precision shape detecting system of cold rolling strip is developed to meet industrial application, which mainly consists of the shape detecting roller, the collecting ring, the digital signal processing (DSP) shape signal processing board and the shape control model. Based on the shape detecting principle, the shape detecting roller is designed with a new integral structure for improving the precision of shape detecting and avoiding scratching strip surface. Based on the DSP technology, the DSP shape signal processing circuit board is designed and embedded in the shape detecting system for the reliability and stability of shape signal processing. The shape detecting system was successfully used in Angang 1 250 mm HC 6-high reversible cold rolling mill. The precision of shape detecting is 0.2 I and the shape deviation is controlled within 6 1 after the close loop shape control is input.
基金Supported by the National“863”Project of China(2010AA10A301)National Technology Support Project for the 12th Five-year Plan(2011BAD20B07)
文摘Target detection is one of the key technology of precision chemical application.Previously the digital coding modulation technique was commonly used to emit and receive the optical signal in the target detection systems previously in China.It was difficult to adjust the output power,and the anti-interference ability was weak in these systems.In order to resolve these problems,the target detection method based on analog sine-wave modulation was studied.The spectral detecting system was set up in the aspects of working principle,electric circuit,and optical path.Lab testing was performed.The results showed that the reflected signal from the target varied inversely with detection distances.It indicated that it was feasible to establish the target detection system using analog sine-wave modulation technology.Furthermore,quantitative measurement of the reflected optical signal for near-infrared and visible light could be achieved by using this system.The research laid the foundation for the future development of the corresponding instrument.
文摘This paper is concerned with a high characteristic image processing and recognition system that is used for inspecting real-time blemishes, streaks and cracks on the inner walls of high accuracy pipes. As a regular detector, the BP neural network is used for extracting features of the image inspected and classifying these images, it takes fully advantage of the function of artificial neural network, such as the information distributed memory, large scale self-adapting parallel processing, high fault-tolerant ability and so forth. Besides, an improved BP algorithm is used in the system for training the network, and making the learning procedure of the net converges to the minimum of overall situation at high rate.
文摘Objective Focusing on the problem such as slow scanning speed, complex system design and low light efficiency, a new parallel confocal 3D profile detecting method based on optical fiber technology, which realizes whole-field confocal detecting, is proposed. Methods The optical fiber plate generates an 2D point light source array, which splits one light beam into N2 subbeams and act the role of pinholes as point source and point detecting to filter the stray light and reflect light. By introducing the construction and working principle of the multi-beam 3D detecting system, the feasibility is investigated. Results Experiment result indicates that the optical fiber technology is applicable in parallel confocal detecting. Conclusion The equipment needn't mechanical rotation. The measuring parameters that influence the detecting can easily be adapted to satisfy different requirments of measurement. Compared with the conventional confocal method, the parallel confocal detecting system using optical fiber plate is simple in the mechanism, the measuring field is larger and the speed is faster.
文摘Using arylhydrocarbon hydroxylase (AHH),ethoxyre-sorufin-O-deethylase,ethoxycoumarin-O-deethylase andaminopyrine-N-demethylase as marker enzymes and 3-methylcholanthrene (3-MC),-naphthof1avon,norepine-phrine (NE) and phenobarbita1 as inducers,it is con-firmed that there are inducib1e Cyt P450 IA and
文摘A handwriting detecting system based on Micro- accelerometer and Micro-gyros is proposed. And the algorithm of the detecting system is also described in detail. And the error analysis of the detecting system is also described in de-tail. The motion contrail of the handwriting de-tecting in the 3-D space can be recognized through compute the matrix of attitude angles and the dynamic information of the handwriting detecting which is mapped on the 2-D plane. Then the information of contrail can be recurred on the writing plane by integral. There were good results in the actual experiment.
基金This project is supported by National Natural Science Foundation of China (No.50175024)Provincial Program for Young Teacher of Colleges and Universities of Anhui(No.2005jql019)Provincial Research Foundation of Key Laboratory of Anhui.
文摘Compared with the traditional scanning confocal microscopy, the effect of various factors on characteristic in multi-beam parallel confocal system is discussed, the error factors in multi-beam parallel confocal system are analyzed. The factors influencing the characteristics of the multi-beam parallel confocal system are discussed. The construction and working principle of the non-scanning 3D detecting system is introduced, and some experiment results prove the effect of various factors on the detecting system.
文摘In this paper,a non-invasive detecting system for measuring blood flow parame-ters of cardiovascular system is described.The device employs a new unique methodwhich is based on the theory of hemodynamics,ordinary measurement of blood pres-sure and pulse information of variation of pulse contour parameter Ko The sphygmo-gram is picked up from radial artery via sensor.As the blood pressure changes。
文摘Indoor organization user activity’s (UA) direction detection monitoring system and also emergency prediction are major challenging tasks in the field of the typical body sensor and indoor fixed sensor networks. In this paper, indoor UA based direction detection monitoring system is achieved by the combination of both the orientation sensor and Bluetooth Low Energy (BLE) in user’s smartphones belonging to the Internet of Things (IoT). The orientation sensor senses the actual orientation of the user and BLE transmits the sensed BLE signals to monitoring system using star topology in IoT. In monitoring system, classification algorithm is used to identify the directions of the smartphone users. The emergency situation of the user is also predicted based on signal variation instantly in real time. The user activity’s signals are captured using LabVIEW toolkit then applied to various classification algorithms such asRF—91.42%, Ibk—90.55%, j48— 85.61%, K*—73.54% are the results obtained. An average of 85% was obtained in all the classifi- cation algorithims indicating the consistency and accuracy in detecting the directions of the users. RF was found to be the best among all the classification algorithms. IoT enabled devices have high demand in near coming future, moreover smartphones users increase day by day, hence implementing and maintaining the above said system would be much easier and cheaper compared to other conventional networks.
文摘BACKGROUND Diagnosing bacterial infections(BI)in patients with cirrhosis can be challenging because of unclear symptoms,low diagnostic accuracy,and lengthy culture testing times.Various biomarkers have been studied,including serum procal-citonin(PCT)and presepsin.However,the diagnostic performance of these markers remains unclear,requiring further informative studies to ascertain their diagnostic value.AIM To evaluate the pooled diagnostic performance of PCT and presepsin in detecting BI among patients with cirrhosis.INTRODUCTION Bacterial infections(BI)commonly occur in patients with cirrhosis,resulting in poor outcomes,including the development of cirrhotic complications,septic shock,acute-on-chronic liver failure(ACLF),multiple organ failures,and mortality[1,2].BI is observed in 20%-30%of hospitalized patients,with and without ACLF[3].Patients with cirrhosis are susceptible to BI because of internal and external factors.The major internal factors are changes in gut microbial composition and function,bacterial translocation,and cirrhosis-associated immune dysfunction syndrome[4,5].External factors include alcohol use,proton-pump inhibitor use,frailty,readmission,and invasive procedures.Spontaneous bacterial peritonitis(SBP),urinary tract infection,pneumonia,and primary bacteremia are the common BIs in hospit-alized patients with cirrhosis[6].Early diagnosis and adequate empirical antibiotic therapy are two critical factors that improve the prognosis of BI in patients with cirrhosis.However,early detection of BI in cirrhosis is challenging due to subtle clinical signs and symptoms,low sensitivity and specificity of systemic inflammatory response syndrome criteria,and low sensitivity of bacterial cultures.Thus,effective biomarkers need to be identified for the early detection of BI.Several biomarkers have been evaluated,but their efficacy in detecting BI is unclear.Procalcitonin(PCT)is a precursor of the hormone calcitonin,which is secreted by parafollicular cells of the thyroid gland[7].In the presence of BI,PCT gene expression increases in extrathyroidal tissues,causing a subsequent increase in serum PCT level[8].Changes in serum PCT are detectable as early as 4 hours after infection onset and peaks between 8 and 24 hours,making it a valuable diagnostic biomarker for BI.Several studies have demonstrated the favorable diagnostic accuracy of PCT in the diagnosis of BI in individuals with cirrhosis[9-13]and without cirrhosis[14-16].Since 2014,two meta-analyses have been published on the diagnostic value of PCT for SBP and BI in patients with cirrhosis[17,18].Other related studies have been conducted since then[10-12,19-33].Serum presepsin has recently emerged as a promising biomarker for diagnosing BI.This biomarker is the N-terminal fraction protein of the soluble CD14 g-negative bacterial lipopolysaccharide–lipopolysaccharide binding protein(sCD14-LPS-LBP)complex,which is cleaved by inflammatory serum protease in response to BI[34].Presepsin levels increase within 2 hours and peaks in 3 hours[35].This is useful for detecting BI since presepsin levels increase earlier than serum Our systematic review and meta-analysis was performed with adherence to PRISMA guidelines[37].
文摘Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy.
基金Modernization of Traditional Chinese Medicine Project of National Key R&D Program of China:The construction of the theoretical system of Traditional Chinese Medicine nonpharmacological therapy based on body surface stimulation(2023YFC3502704)Sichuan Provincial Science and Technology Program Project:Research and Development of Chinese Medicine Intelligent Tongue Diagnosis Equipment for Digestive System Chinese Medicine Advantageous Diseases(2023YFS0327)+2 种基金Research and Development of Chinese Medicine Intelligent Detection System for Intestinal Functions(2024YFFK0044)Research and Application of Chinese Medicine Diagnosis and Treatment Program for Herpes Zoster Treated by Shu Pai Fire Acupuncture(2024YFFK0089)Major Research and Development Project of The China Academy of Chinese Medical Sciences Innovation:Construction and application of the theoretical research mode of Traditional Chinese Medicine diagnosis and treatment of modern diseases(CI2021A00104)。
文摘OBJECTIVE:To propose an automatic acupuncture robot system for performing acupuncture operations.METHODS:The acupuncture robot system consists of three components:automatic acupoint localization,acupuncture manipulations,and De Qi sensation detection.The OptiTrack motion capture system is used to locate acupoints,which are then translated into coordinates in the robot control system.A flexible collaborative robot with an intelligent gripper is then used to perform acupuncture manipulations with high precision.In addition,a De Qi sensation detection system is proposed to evaluate the effect of acupuncture.To verify the stability of the designed acupuncture robot,acupoints'coordinates localized by the acupuncture robot are compared with the Gold Standard labeled by a professional acupuncturist using significant level tests.RESULTS:Through repeated experiments for eight acupoints,the acupuncture robot achieved a positioning error within 3.3 mm,which is within the allowable range of needle extraction and acupoint insertion.During needle insertion,the robot arm followed the prescribed trajectory with a mean deviation distance of 0.02 mm and a deviation angle of less than 0.15°.The results of the lifting thrusting operation in the Xingzhen process show that the mean acupuncture depth error of the designed acupuncture robot is approximately 2 mm,which is within the recommended depth range for the Xingzhen operation.In addition,the average detection accuracy of the De Qi keywords is 94.52%,which meets the requirements of acupuncture effect testing for different dialects.CONCLUSION:The proposed acupuncture robot system streamlines the acupuncture process,increases efficiency,and reduces practitioner fatigue,while also allowing for the quantification of acupuncture manipulations and evaluation of therapeutic effects.The development of an acupuncture robot system has the potential to revolutionize low back pain treatment and improve patient outcomes.
文摘Tomato plant diseases often first manifest on the leaves,making the detection of tomato leaf diseases particularly crucial for the tomato cultivation industry.However,conventional deep learning models face challenges such as large model sizes and slow detection speeds when deployed on resource-constrained platforms and agricultural machinery.This paper proposes a lightweight model for detecting tomato leaf diseases,named LT-YOLO,based on the YOLOv8n architecture.First,we enhance the C2f module into a RepViT Block(RVB)with decoupled token and channel mixers to reduce the cost of feature extraction.Next,we incorporate a novel Efficient Multi-Scale Attention(EMA)mechanism in the deeper layers of the backbone to improve detection of critical disease features.Additionally,we design a lightweight detection head,LT-Detect,using Partial Convolution(PConv)to significantly reduce the classification and localization costs during detection.Finally,we introduce a Receptive Field Block(RFB)in the shallow layers of the backbone to expand the model’s receptive field,enabling effective detection of diseases at various scales.The improved model reduces the number of parameters by 43%and the computational load by 50%.Additionally,it achieves a mean Average Precision(mAP)of 90.9%on a publicly available dataset containing 3641 images of tomato leaf diseases,with only a 0.7%decrease compared to the baseline model.This demonstrates that the model maintains excellent accuracy while being lightweight,making it suitable for rapid detection of tomato leaf diseases.
基金funded by the Office of Gas and Electricity Markets(Ofgem)and supported by De Montfort University(DMU)and Nottingham Trent University(NTU),UK.
文摘This paper introduces the Integrated Security Embedded Resilience Architecture (ISERA) as an advanced resilience mechanism for Industrial Control Systems (ICS) and Operational Technology (OT) environments. The ISERA framework integrates security by design principles, micro-segmentation, and Island Mode Operation (IMO) to enhance cyber resilience and ensure continuous, secure operations. The methodology deploys a Forward-Thinking Architecture Strategy (FTAS) algorithm, which utilises an industrial Intrusion Detection System (IDS) implemented with Python’s Network Intrusion Detection System (NIDS) library. The FTAS algorithm successfully identified and responded to cyber-attacks, ensuring minimal system disruption. ISERA has been validated through comprehensive testing scenarios simulating Denial of Service (DoS) attacks and malware intrusions, at both the IT and OT layers where it successfully mitigates the impact of malicious activity. Results demonstrate ISERA’s efficacy in real-time threat detection, containment, and incident response, thus ensuring the integrity and reliability of critical infrastructure systems. ISERA’s decentralised approach contributes to global net zero goals by optimising resource use and minimising environmental impact. By adopting a decentralised control architecture and leveraging virtualisation, ISERA significantly enhances the cyber resilience and sustainability of critical infrastructure systems. This approach not only strengthens defences against evolving cyber threats but also optimises resource allocation, reducing the system’s carbon footprint. As a result, ISERA ensures the uninterrupted operation of essential services while contributing to broader net zero goals.
基金described in this paper has been developed with in the project PRESECREL(PID2021-124502OB-C43)。
文摘The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats.
文摘At an age when most teens are figuring out high school,Siddharth is already shaping the future of medical tech.The 14⁃year⁃old boy from Dallas has created an AI⁃powered app,Circadian AI,capable of detecting heart disease in just 7 seconds using only a smartphone's microphone.
基金the financial support from the National Natural Science Foundation of China(No.21904007)the Fundamental Research Funds for the Central Universities(China,No.2412022QD008)+1 种基金the Jilin Provincial Department of Education(China),the Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province(China)the Analysis and Testing Center of Northeast Normal University(China)。
文摘The complexity of living environment system demands higher requirements for the sensitivity and selectivity of the probe.Therefore,it is of great importance to develop a universal strategy for highperformance probe optimization.Herein,we propose a novel“Enrichment-enhanced Detection”strategy and use carbon dots-dopamine detection system as a representative model to evaluate its feasibility.The composite probe carbon dots (CDs)-encapsulated in glycol-chitosan (GC)(i.e.,CDs@GC) was obtained by simply mixing GC and CDs through noncovalent interactions,including electrostatic interactions and hydrogen bonding.Dopamine (DA) could be detected through internal filter effect (IFE)-induced quenching of CDs.In the case of CDs@GC,noncovalent interactions (electrostatic interactions) between GC and the formed quinone (oxide of DA) could selectively extract and enrich the local concentration of DA,thus effectively improving the sensitivity and selectivity of the sensing system.The nanosensor had a low detection limit of 3.7 nmol/L,which was a 12-fold sensitivity improvement compared to the bare CDs probes with similar fluorescent profiles,proving the feasibility of the“Enrichment-enhanced Detection”strategy.Further,to examine this theory in real case,we designed a highly portable sensing platform to realize visual determination of DA.Overall,our work introduces a new strategy for accurately detecting DA and provides valuable insights for the universal design and optimization of superior nanoprobes.
基金supported by Higher Institution Centre of Excellence(HICoE)Grant(A305-KR-AKH002-0000000278-K134)from the Ministry of Higher Education,Malaysia.
文摘Objective:To assess aptamer-based assays for diagnosing latent tuberculosis infection(LTBI).Methods:Literature from Medline,ScienceDirect,and Scopus,covering publications from January 1,2012,to December 31,2023,was examined.This review evaluates different aptamers,biomarkers,sample types,sample sizes,reference assays,and the assays'sensitivity and specificity.By using the Quality Assessment of Diagnostic Accuracy Studies 2,the risk of bias in each study was evaluated.Results:Aptamer-based assays generally showed a sensitivity of 90%(95%CI:75%-100%)and specificity of 90%(95%CI:50%-100%),where optical aptasensor showed the highest sensitivity and specificity at 100%.Serum samples were frequently used to enhance antigen detectability,improving the assay’s performance.Meanwhile,HspX was the most studied biomarker,followed by MPT64,and IFN-γ.Conclusions:Aptamer-based assays could be reliable alternatives to current LTBI detection methods,but further research is needed to validate their clinical efficacy.