期刊文献+
共找到286篇文章
< 1 2 15 >
每页显示 20 50 100
Infrared Spectra and Pyrolysis of Selected Molecular Models of Coal: Insight from Density Functional Calculations 被引量:2
1
作者 郭娟娟 朱纯 +5 位作者 贺琼琼 王新华 冯莉 武建军 刘炯天 曹泽星 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第6期863-870,共8页
Equilibrium structures and infrared spectra of four typical molecular models of coal have been studied by density functional calculations. Combining theoretical calculations on the coal models with experimental FT-IR ... Equilibrium structures and infrared spectra of four typical molecular models of coal have been studied by density functional calculations. Combining theoretical calculations on the coal models with experimental FT-IR spectra of selected low rank perhydrous coals, a plausible molecular representation for this kind of coals was proposed, and its predicted IR spectra reasonably match the experimental observation. Calculations indicate that the cleavage of the C-C bridge bond for the coal structures considered here occurs at about 540 ℃ and the C-O ether bridge bond may break under temperature ranging from 500 to 600 ℃for the aryl-CH2-O-CH2-aryl ether bond or from 200 to 300 ℃ for the aryl-CH2-O-aryl ether bond, showing remarkable effect of the local structural environment. The coal model containing the carboxyl group may release CO2 at about 300 ℃ through the decarboxylation with a barrier of 69 kcal/mol. 展开更多
关键词 molecular representation of coal 1R spectra PYROLYSIS density functional calculations
在线阅读 下载PDF
Density Functional Calculations of C–NO_2 Bond Dissociation Energies for Nitroalkanes Molecules 被引量:1
2
作者 李小红 张瑞州 +2 位作者 张现周 杨向东 程新路 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 北大核心 2007年第12期1481-1485,共5页
Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B... Bond dissociation energies for the removal of nitrogen dioxide group in some nitroalkane energetic materials have been calculated by using the three hybrid density functional theory (DFT) methods B3LYP, B3PW91 and B3P86 with 6-31g^** and 6-311g^** basis sets. The computed BDEs have been compared with the available experimental results. It is found that the B3P86 method with 6-31g^** and 6-311g^** basis sets can obtain satisfactory bond dissociation energies (BDEs), which are in extraordinary agreement with the experimental data. Considering the smaller mean absolute deviation and maximum difference, the reliable B3P86/6-311g^** method was recommended to compute the BDEs for the removal of nitrogen dioxide group in the nitroalkane energetic materials. Using the method, the BDEs of 8 other nitroalkane energetic materials have been calculated and the maximum difference from experimental value is 1.76 kcal.mo1^-1 (for the BDE of tC4Hg-NOz), which further proves the reliability of B3P86/6-311g^** method. In addition, it is noted that the BDEs of C-NO2 bond change slightly for main chain nitroalkane compounds with the maximum difference of only 3.43 kcal mo1^-1. 展开更多
关键词 bond dissociation energy density functional calculation nitroalkane energetic compound
在线阅读 下载PDF
Elastic, Piezoelectric and Acoustic Properties of Wurtzite MnO from Density Functional Calculation
3
作者 HAN Han 《Communications in Theoretical Physics》 SCIE CAS CSCD 2013年第6期751-755,共5页
The wurtzite MnO has been obtained lately and is expected to have large potentiai in varies applications. Since elastic properties are the bases of various applications, we calculate these properties of wurtzite MnO b... The wurtzite MnO has been obtained lately and is expected to have large potentiai in varies applications. Since elastic properties are the bases of various applications, we calculate these properties of wurtzite MnO based on the density-functionai theory and compare it with other two phases of MnO (rocksalt and zinc-blende MnO). The Young's modulus of wurtzite and zinc-blende MnO are 65.6 GPa and 73.4 GPa, respectively, which are much lower than those of rocksaJt MnO (177.6 GPa). More importantly, both the Poisson ratio and the bulk modulus to shear modulus ratio indicate that wurtzite MnO should have much better ductile properties than rocksalt MnO. The calculated piezoelectric constants of wurtzite MnO are comparable to those of ZnO, This suggests wurtzite MnO is a good piezoelectric material. Furthermore, the slowness surfaces of acoustic waves of them are given from Christoffel equation. 展开更多
关键词 wurtzite MnO density functional calculation elastic properties piezoelectric properties acousticproperties
原文传递
Local Structure Analysis of Lead Zinc Niobate-Barium Titanate Ceramic by X-Ray Absorption Spectroscopy and Density Functional Calculation
4
作者 Kanokwan Kanchiang Phakkhananan Pakawanit Rattikorn Yimnirun 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第8期113-116,共4页
The local structure of an alternative Pb(Zn1/3Nb2/3)O3-based perovskite ceramic is investigated. The 0.07BaTiO33-0.93Pb(Zn1/3Nb2/3)O3 ceramic is synthesized using a combination of Zn3Nb2O8 B-site precursor and BaT... The local structure of an alternative Pb(Zn1/3Nb2/3)O3-based perovskite ceramic is investigated. The 0.07BaTiO33-0.93Pb(Zn1/3Nb2/3)O3 ceramic is synthesized using a combination of Zn3Nb2O8 B-site precursor and BaTiO33 perovskite phase stabilizer. Then, x-ray absorption spectroscopy and density functional theory are employed to calculate the local structure configuration and formation energy of the prepared samples. Ba2+ is found to replace Pb2+ in AA-site with Zn2+ occupying BB-site in Pb(Zn1/3Nb2/3)O3, while in the neighboring structure, Ti4+4+ replaces Nb5+5+ in BB-site with Pb2+2+ occupying AA-site. With the substitution of BaTiO33 in Pb(Zn1/3Nb2/3)O3, the bond length between Zn2+ and Pb2+ is longer than that of the typical perovskite phase of Pb(Zn1/3Nb2/3)O3. This indicates the key role of BaTiO33 in decreasing the steric hindrance of Pb2+ lone pair, and the mutual interactions between Pb2+ lone pair and Zn2+ and the formation energy is seen to decrease. This finding of the formation energy and local structure configuration relationship can further extend a fundamental understanding of the role of BaTiO33 in stabilizing the perovskite phase in PbZn13Nb23O3-based materials, which in turn will lead to an improved preparation technique for desired electrical properties. 展开更多
关键词 PB Local Structure Analysis of Lead Zinc Niobate-Barium Titanate Ceramic by X-Ray Absorption Spectroscopy and density functional calculation EXAFS BA XANES Zn
原文传递
Using density functional calculations to elucidate atomic ordering of Pd-Rh nanoparticles at sizes relevant for catalytic applications
5
作者 Lorena Vega Hristiyan A.Aleksandrov Konstantin M.Neyman 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第11期1749-1757,共9页
Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic orde... Pd-Rh nanoparticles are known to easily undergo surface restructuring in reactive environment. This study quantifies, with the help of density functional(DFT) calculations and a novel topological approach, atomic ordering and surface segregation effects in Pd-Rh particles with compositions 1:3, 1:1 and 3:1 containing up to 201 atoms(ca. 1.7 nm). The obtained data are used to reliably optimise energetically preferred atomic orderings in inaccessible by DFT Pd-Rh particles containing thousands of atoms and exhibiting sizes exceeding 5 nm, which are typical for catalytic metal particles. It is outlined, how segregation effects on the surface arrangement of Pd-Rh nanoalloy catalysts induced by adsorbates can be evaluated in a simple way within the present modelling setup. 展开更多
关键词 density functional calculations Atomic ordering Pd Rh nanoparticles Size relevant
在线阅读 下载PDF
Density functional calculation of equilibrium geometry and electronic structure of pyrite
6
作者 邱冠周 肖奇 +1 位作者 胡岳华 徐竞 《中国有色金属学会会刊:英文版》 CSCD 2001年第4期583-586,共4页
The equilibrium geometry and electronic structure of pyrite has been studied using self consistent density functional theory within the local density approximation (LDA). The optimum bulk geometry is in good agreement... The equilibrium geometry and electronic structure of pyrite has been studied using self consistent density functional theory within the local density approximation (LDA). The optimum bulk geometry is in good agreement with crystallographic data. The calculated band structure and density of states in the region around the Fermi energy show that valence band maximum (VBM) is at X (100), and the conduction band minimum (CBM) is at G (000). The indirect and direct band gaps are 0.6?eV and 0.74?eV, respectively. The calculated contour map of difference of charge density shows excess charge in nonbonding d electron states on the Fe sites. The density increases between sulfur nuclei and between iron and sulfur nuclei qualitatively reveal that S-S bond and Fe-S bond are covalent binding. 展开更多
关键词 density functional calculation electronic structure equilibrium geometry PYRITE
在线阅读 下载PDF
Structural and Electronic Properties of ConC3-/0 and ConC4-/0 (n=1-4) Clusters: Mass-Selected Anion Photoelectron Spectroscopy and Density Functional Theory Calculations 被引量:1
7
作者 徐西玲 袁金云 +2 位作者 杨斌 许洪光 郑卫军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2017年第6期717-726,I0002,I0003,共12页
We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabati... We investigated the structural evolution and elecfronic properties of ConC3-/0 and ConC4-/0 (n=1-4) clusters by using mass-selected photoelectron spectroscopy and density functional theory calculations. The adiabatic and vertical detachment energies of CO1-4C3- and COl-4C4- were obtained from their photoelectron spectra. By comparing the theoretical results with the experimental data, the global minimum structures were determined. The results indicate that the carbon atoms of ConC3-/0 and ConC4-/0 (n=1-4) are separated from each other gradually with increasing number of cobalt atoms but a C2 unit still remains at n=4. It is interesting that the Co2C3- and Co2C4- anions have planar structures whereas the neutral Co2C3 and Co2C4 have linear structures with the Co atoms at two ends. The Co3C3- anion has a planar structure with a Co2C2 four-membered ring and a Co3C four-membered ring sharing a Co-Co bond, while the neutral Co3C3 is a three-dimensional structure with a C2 unit and a C atom connecting to two faces of the Co3 triangle. 展开更多
关键词 Photoelectron spectroscopy Transition metal carbide Structural evolution density functional calculations
在线阅读 下载PDF
Effect of Pd doping on CH_4 reactivity over Co_3O_4 catalysts from density-functional theory calculations 被引量:5
8
作者 Chengcheng Zhao Yonghui Zhao +1 位作者 Shenggang Li Yuhan Sun 《Chinese Journal of Catalysis》 EI CSCD 北大核心 2017年第5期813-820,共8页
Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the tw... Palladium oxide(PdOx)and cobalt oxide(Co3O4)are efficient catalysts for methane(CH4)combustion,and Pd‐doped Co3O4catalysts have been found to exhibit better catalytic activities,which suggest synergism between the two components.We carried out first‐principles calculations at the PBE+U level to investigate the Pd‐doping effect on CH4reactivity over the Co3O4catalyst.Because of the structural complexity of the Pd‐doped Co3O4catalyst,we built Pd‐doped catalyst models using Co3O4(001)slabs with two different terminations and examined CH4reactivity over the possible Pd?O active sites.A low energy barrier of0.68eV was predicted for CH4dissociation over the more reactive Pd‐doped Co3O4(001)surface,which was much lower than the0.98and0.89eV that was predicted previously over the more reactive pure Co3O4(001)and(011)surfaces,respectively.Using a simple model,we predicted CH4reaction rates over the pure Co3O4(001)and(011)surfaces,and Co3O4(001)surfaces with different amounts of Pd dopant.Our theoretical results agree well with the available experimental data,which suggests a strong synergy between the Pd dopant and the Co3O4catalyst,and leads to a significant increase in CH4reaction rate. 展开更多
关键词 Spinel cobalt oxide Palladium dopant Methane combustion density function theory calculation Reaction rate Collision theory
在线阅读 下载PDF
Transition‐metal‐atom‐pairs deposited on g‐CN monolayer for nitrogen reduction reaction:Density functional theory calculations 被引量:3
9
作者 Bin Huang Yifan Wu +3 位作者 Bibo Chen Yong Qian Naigen Zhou Neng Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第7期1160-1167,共8页
The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fab... The development of highly active DFT catalysts for an electrocatalytic N_(2)reduction reaction(NRR)under mild conditions is a difficult challenge.In this study,a series of atom‐pair catalysts(APCs)for an NRR were fabricated using transition‐metal(TM)atoms(TM=Sc−Zn)doped into g‐CN monolayers.The electrochemical mechanism of APCs for an NRR has been reported by well‐defined density functional theory calculations.The calculated limiting potentials were−0.47 and−0.78 V for the Fe_(2)@CN and Co_(2)@CN catalysts,respectively.Owing to its high suppression of hydrogen evolution reactions,Co_(2)@CN is a superior electrocatalytic material for a N_(2)fixation.Stable Fe_(2)@CN may be a strongly attractive material for an NRR with a relatively low overpotential after an improvement in the selectivity.The two‐way charge transfer affirmed the donation‐acceptance procedure between N_(2)and Fe_(2)@CN or Co_(2)@CN,which play a crucial role in the activation of inert N≡N bonds.This study provides an in‐depth investigation into atom‐pair catalysts and will open up new avenues for highly efficient g‐CN‐based nanostructures for an NRR. 展开更多
关键词 Atom‐pair catalysts Graphitic carbon nitride monolayers Nitrogen reduction reaction Two‐dimensional materials density functional theory calculations
在线阅读 下载PDF
Ultraviolet laser ionization studies of 1-fluoronaphthalene clusters and density functional theory calculations
10
作者 张树东 张海芳 曾文碧 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期223-227,共5页
This paper studies supersonic jet-cooled 1-fluoronaphthalene (1FN) clusters by ultraviolet (UV) laser ionization at 281 nm in a time-of-flight mass spectrometer. The (1FN)+ (n=1-3) series cluster ions are obs... This paper studies supersonic jet-cooled 1-fluoronaphthalene (1FN) clusters by ultraviolet (UV) laser ionization at 281 nm in a time-of-flight mass spectrometer. The (1FN)+ (n=1-3) series cluster ions are observed where the signal intensity decreases with increasing cluster size. The effects of sample inlet pressures and ionization laser fluxes to mass spectral distribution are measured. Using density functional theory calculations, it obtains a planar geometric structure of 1FN dimer which is combined through two hydrogen bonds. The mass spectra indicate that the intensity of 1FN trimer is much weaker than that of 1FN dimer and this feature is attributed to the fact that the dimer may form the first "shell" in geometric structure while the larger clusters are generated based on this fundamental unit. 展开更多
关键词 1-fluoronaphthalene clusters ultraviolet laser ionization mass spectrum density functional theory calculation
原文传递
New ternary superconducting compound LaRu2As2: Physical properties from density functional theory calculations
11
作者 M A Hadi M S Ali +1 位作者 S H Naqib A K M A Islam 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第3期453-460,共8页
In this paper, we perform the density functional theory (DFT) -based calculations by the first-principles pseudopo- tential method to investigate the physical properties of the newly discovered superconductor LaRu2A... In this paper, we perform the density functional theory (DFT) -based calculations by the first-principles pseudopo- tential method to investigate the physical properties of the newly discovered superconductor LaRu2As2 for the first time. The optimized structural parameters are in good agreement with the experimental results. The calculated independent elas- tic constants ensure the mechanical stability of the compound. The calculated Cauchy pressure, Pugh's ratio as well as Poisson's ratio indicate that LaRu2As2 should behave as a ductile material. Due to low Debye temperature, LaRu2As2 may be used as a thermal barrier coating (TBC) material. The new compound should exhibit metallic nature as its valence bands overlap considerably with the conduction bands. LaRu2As2 is expected to be a soft material and easily machinable because of its low hardness value of 6.8 GPa. The multi-band nature is observed in the calculated Fermi surface. A highly anisotropic combination of ionic, covalent and metallic interactions is expected to be in accordance with charge density calculation. 展开更多
关键词 new superconductor LaRu2As2 density functional theory (DFT) calculations mechanical proper-ties electronic features
原文传递
Impact of Arsenic Related Defects on Electronic Performance of ZrO2/GaAs:Density Functional Theory Calculations
12
作者 王宇鹏 王永萍 史力斌 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期104-107,共4页
Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlo... Arsenic can diffuse into high-κ dielectrics during OaAs-based metal oxide semiconductor transistor process, which causes the degradation of gate dielectrics. To explore the origins of the degradation, we employ nonlocal B3LYP hybrid functional to study arsenic related defects in ZrO2. Via band alignments between the OaAs and ZrO2, we are able to determine the defect formation energy in the GaAs relative to the ZrO2 band gap and assess how they will affect the device performance. Arsenic at the interstitial site serves as a source of positive fixed charge while at the oxygen or zirconium substitutional site changes its charge state within the band gap of GaAs. Moreover, it is found that arsenic related defects produce conduction band offset reduction and gap states, which will increase the gate leakage current. 展开更多
关键词 Zr Impact of Arsenic Related Defects on Electronic Performance of ZrO2/GaAs:density functional Theory calculations
原文传递
Dual-functional in-situ gel polymer electrolyte for high-performance quasi-solid-state Na-S batteries
13
作者 Mengyang Cui Shisheng Yuan +1 位作者 Bo Jin Qing Jiang 《Journal of Energy Chemistry》 2025年第10期241-250,共10页
Sodium-sulfur(Na-S)batteries are believed as the hopeful energy storage and conversion techniques owing to the high specific capacity and low cost.Nevertheless,unstable sodium(Na)deposition/stripping of Na metal anode... Sodium-sulfur(Na-S)batteries are believed as the hopeful energy storage and conversion techniques owing to the high specific capacity and low cost.Nevertheless,unstable sodium(Na)deposition/stripping of Na metal anode,low intrinsic conductivity of sulfur cathode,and severe shuttling effect of sodium polysulfides(NaPSs)pose significant challenges in the actual reversible capacity and cycle life of Na-S batteries.Herein,a self-supporting electrode made of nitrogen-doped carbon fiber embedded with cobalt nanoparticles(Co/NC-CF)is designed to load sulfur.Meanwhile,gel polymer electrolyte(GPE)with high ion transfer ability is obtained by in-situ polymerization inside the battery.During the polymerization process,an integrated electrode-electrolyte and a continuous ion-electron conduction network in a composite cathode are constructed inside the Na-S battery.It is noteworthy that the designed GPE demonstrates superior ionic conductivity and effective adsorption of NaPSs that can significantly suppress the shuttle effect.Leveraging the synergistic interplay between the designed GPE and self-supporting cathode,the assembled quasi-solid-state(QSS)Na-S battery exhibits great cycling stability.These experimental results are further corroborated by COMSOL Multiphysics simulations and density functional theory(DFT)calculations,which mechanistically validate the enhanced electrochemical performance.The findings of this study offer new and promising perspectives for advancing the development of nextgeneration solid-state batteries. 展开更多
关键词 Gel polymer electrolyte Quasi-solid-state sodium-sulfur battery Integrated electrode-electrolyte density functional theory calculation COMSOL simulation
在线阅读 下载PDF
Elastic properties of Nb-based alloys by using the density functional theory 被引量:2
14
作者 刘增辉 尚家香 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第1期357-362,共6页
A first-principles density functional approach is used to study the electronic and the elastic properties of Nb15X (X = Ti, Zr, Hf, V, Ta, Cr, Mo, and W) alloys. The elastic constants cn and c12, the shear modulus C... A first-principles density functional approach is used to study the electronic and the elastic properties of Nb15X (X = Ti, Zr, Hf, V, Ta, Cr, Mo, and W) alloys. The elastic constants cn and c12, the shear modulus CI, and the elastic modulus E(lOO) are found to exhibit similar tendencies, each as a function of valence electron number per atom (EPA), while c44 seems unclear. Both cu and c12 of Nb15X alloys increase monotonically with the increase of EPA. The C/ and E000) also show similar tendencies. The elastic constants (except c44) increase slightly when alloying with neighbours of a higher d-transition series. Our results are supported by the bonding density distribution. When solute atoms change from Ti(Zr, Hf) to V(Ta) then to Cr(Mo, W), the bonding electron density between the central solute atom and its first neighbouring Nb atoms is increased and becomes more anisotropic, which indicates the strong interaction and thus enhances the elastic properties of Nb-Cr(Mo, W) alloys. Under uniaxial {100) tensile loading, alloyed elements with less (more) valence electrons decrease (increase) the ideal tensile strength. 展开更多
关键词 Nb-based alloys elastic properties density functional calculations
原文传递
Density functional theory study on the role of ternary alloying elements in TiFe-based hydrogen storage alloys 被引量:2
15
作者 Won-Seok Ko Ki Beom Park Hyung-Ki Park 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第33期148-158,共11页
The role of additional ternary alloying elements on the performance of stationary TiFe-based hydrogen storage alloys was investigated based on first-principles density functional theory calculations.As a basic step fo... The role of additional ternary alloying elements on the performance of stationary TiFe-based hydrogen storage alloys was investigated based on first-principles density functional theory calculations.As a basic step for examinations,the site preference of each alloying element in the stoichiometric and nonstoichiometric B2TiFe compounds was clarified considering possible antisite defects.Based on the revealed site preference,the effect of various possible ternary elements on the hydrogen storage was examined by focusing on the formation enthalpies of TiFeH and TiFeH_(2) hydrides,which were closely related to the change in the location of plateaus in the pressure-composition-temperature curve.Several physical properties such as the volume expansion due to hydride formation were also examined to provide additional criteria for selecting optimum alloying conditions in future alloying design processes.Candidate alloying elements that maximize the grain boundary embrittlement due to the solute segregation were proposed for the enhanced initial activation of TiFe-based hydrogen storage alloys. 展开更多
关键词 Hydrogen storage alloy Titanium-iron density functional theory calculation Metallic hydride
原文传递
Atomic orbitals modulated dual functional bimetallic phosphides derived from MOF on MOF structure for boosting high efficient overall water splitting 被引量:1
16
作者 Bohan An Weilong Liu +3 位作者 Jipeng Dong Ning Li Yangqin Gao Lei Ge 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期113-125,共13页
The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performan... The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity. 展开更多
关键词 Transition metal phosphides MOF on MOF Atomic orbital theory density functional theory calculation
在线阅读 下载PDF
1D Ferromagnetic Interaction of 2-Iodo Nitronyl Nitroxide Radical Confirmed by Spin Density Calculation
17
作者 LIU Zhi-liang SONG Ye DU Chun-fang 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2012年第6期1066-1069,共4页
A supramolecular 1D ferromagnetic system was studied experimentally as well as theoretically.Hybrid density functional theory(DFT) calculations were based on the X-ray analysis.The results of DFT calculations and Mc... A supramolecular 1D ferromagnetic system was studied experimentally as well as theoretically.Hybrid density functional theory(DFT) calculations were based on the X-ray analysis.The results of DFT calculations and McConnell mechanism have contributed to the understanding of the factors governing the exchange coupling of magnetism in the crystal packing.Both the experimental evidence and theoretical calculation indicate that spin density in 2-iodo nitronyl nitroxide(INN) radicals confirms 1D ferromagnetic chain with inter-chain antiferromagnetic interaction. 展开更多
关键词 Supramolecular chemistry density functional theory calculation Spin density Ferromagnetic chain
在线阅读 下载PDF
Density Functional Theory and Electrochemistry Studies on LiFexMn1-xPO4 Solid Solutions
18
作者 Kang-ping Wang Tao-tao Shen +1 位作者 Dong-ming Chen Wen-lou Wang 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2019年第6期687-692,I0002,I0013-I0015,共10页
The thermodynamic stability and lithiated/delithiated potentials of LiFexMn1-xPO4 were studied with density functional theorical calculations. The results show that the formation free energy of the LiFexMn1-xPO4 solid... The thermodynamic stability and lithiated/delithiated potentials of LiFexMn1-xPO4 were studied with density functional theorical calculations. The results show that the formation free energy of the LiFexMn1-xPO4 solid solution is slightly higher than that of the phase-separated mixture of LiFePO4 and LiMnPO4, and the two forms may co-exist in the actual LiFexMn1-xPO4 materials. The calculation manifests that the lithiated/delithiated potentials of LiFexMn1-xPO4 solid solutions vary via the Mn/Fe ratio and the spatial arrangements of the transition metal ions, and the result is used to explain the shape of capacity-voltage curves. Experimentally, we have synthesized the LiFexMn1-xPO4 materials by solid-phase reaction method. The existence of the LiFexMn1-xPO4 solid solution is thought to be responsible for the appearance of additional capacity-voltage plateau observed in the experiment. 展开更多
关键词 LiFexMn1-xPO4 Solid solution Solid state synthesis density functional theory calculation Electrochemical performance
在线阅读 下载PDF
Regulating the intrinsic electronic structure of carbon nanofibers with high-spin state Ni for sodium storage with high-power density
19
作者 Zhijia Zhang Gang Xie +6 位作者 Yuefang Chen Yanhao Wei Mengmeng Zhang Shulei Chou Yunxiao Wang Yifang Zhang Yong Jiang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期16-23,共8页
Carbon nanofibers(CNFs)with high specific surface area show great potential for sodium storage as a hard carbon material.Herein,CNFs anchored with Ni nanoparticles(CNFs/Ni)were prepared through chemical vapor depositi... Carbon nanofibers(CNFs)with high specific surface area show great potential for sodium storage as a hard carbon material.Herein,CNFs anchored with Ni nanoparticles(CNFs/Ni)were prepared through chemical vapor deposition and impregnation reduction methods,in situ growing on the three-dimensional porous copper current collector(3DP-Cu).The coupling effect of high-spin state Ni nanopar-ticles leads to the increase of defect density and the expansion of lattice spacing of CNFs.Meanwhile,the 3DP-Cu ensures a high loading capacity of CNFs and short ion/electron transport channels.As an integral binder-free anode,the 3DP-Cu/CNFs/Ni exhibits excellent electrochemical performance,which demon-strates a high specific capacity with 298.5 mAh g^(-1)at 1000 mA g^(-1)after 1500 cycles,and a high power density with 200 mAh g^(-1)over 1000 cycles at 5000 mA g^(-1).Density functional theory calculation re-sults show that the high-spin state Ni regulates the electronic structure of CNFs,which significantly reduces the adsorption energy for Na^(+)(-2.7 Ev)and thus enables high-rate capability.The regulation of the electronic structure of carbon materials by high-spin state metal provides a new strategy for developing high-power carbonaceous anode materials for sodium-ion batteries. 展开更多
关键词 Carbon nanofibers Ni nanoparticles High-spin state Sodium-ion batteries Anode materials density functional theory calculation
原文传递
Tetraethylenepentamine-functionalized magnetic mesoporous composites as a novel adsorbent for the removal Cr(Ⅲ)-ethylenediaminetetraacetic acid in complex solution
20
作者 Zhi Hu Jiahong Wang Tongtong Sun 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期16-26,共11页
A novel tetraethylenepentamine(TEPA) functionalized magnetic mesoporous silica adsorbent(FNMs/TEPA) was prepared for the adsorption of Cr(Ⅲ)-ethylenediaminetetraacetic acid(EDTA)from wastewater. The characterization ... A novel tetraethylenepentamine(TEPA) functionalized magnetic mesoporous silica adsorbent(FNMs/TEPA) was prepared for the adsorption of Cr(Ⅲ)-ethylenediaminetetraacetic acid(EDTA)from wastewater. The characterization of the prepared adsorbent certified that TEPA was modified onto the magnetic mesoporous silicon(FNMs), while FNMs/TEPA maintained the ordered mesoporous and pristine magnetic properties. The batch adsorption experiments demonstrated that TEPA significantly enhanced the removal capacity of the adsorbent for Cr(Ⅲ)-EDTA. FNMs/TEPA exhibited an excellent adsorption property(13.84 mg·g-1) at p H 4.0. Even in the presence of high concentrations of coexisting ions and organic acids, the adsorption performance of FNMs/TEPA was stable. Experimental characterization and DFT demonstrated that the adsorption of Cr(Ⅲ)-EDTA was ascribed to the electrostatic interaction, hydrogen bonding, and complexation between Cr(Ⅲ)-EDTA and amino groups on the adsorbent surface. The analysis of the independent gradient model(IGM) shows that electrostatic interaction is the main mode of action in the adsorption process. Moreover, FNMs/TEPA demonstrated remarkable reusability in three regeneration cycles. These findings indicated that FNMs/TEPA possessed excellent application prospects in the disposal of wastewater containing Cr(Ⅲ)-EDTA. 展开更多
关键词 TEPA functionalized magnetic mesoporous silicon Adsorption Cr(III)-EDTA density functional theory calculations
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部