The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopo...The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation.展开更多
The effect of strain rate on the tensile strength of defective monocrystalline silicon (Si) nanorods is studied with the molecular dynamics method. The strain rate applied to the nanorods is varied from l0T to 1014 ...The effect of strain rate on the tensile strength of defective monocrystalline silicon (Si) nanorods is studied with the molecular dynamics method. The strain rate applied to the nanorods is varied from l0T to 1014 s-1, and the atomic interactions among the Si atoms are described by the Stillinger-Weber (SW) potential functions. The tensile strength of the ideal Si nanorod is shown to be strongly strain rate dependent and increasing with the strain rate. The failure pattern also shows strain rate dependence, indicating that increased strain rates gradually suppress unsuitable relaxation and dissipation mechanisms because of the accompanying larger external loadings. Furthermore, the effects of intrinsic material parameters (i.e., the cutoff radius of SW potential function) and defects (i.e., inevitable surface defects and internal preinstalled defects) are investigated. It is revealed that the effect of strain rate on the tensile strength of Si nanorod is influenced by both the intrinsic physical properties of the material and the distribution of the initial defects, with specific surface defects appearing to be more important to nanostructure design.展开更多
With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi...With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.展开更多
文摘The response of three-dimensional sample of Al, containing vacancy complex, under shear loading was simulated. The molecular dynamics method was used and interaction between atoms was described on the base of pseudopotential theory Solitary waves were generated in the sample under mechanical loading. Their interaction with the vacancy complexes was shown to be able to initiate hot spot in that local region of the complexes. Some parameters of the hot spot as well as solitary waves were calculated. The initiation of the hot spot is accompanied with sufficient local structural relaxation.
基金supported by National Basic Research Program of China(No.2013CB035902)Research Project of State Key Laboratory of Hydroscience and Engineering of Tsinghua University(No.2011-KY-4)the National Natural Science Foundation of China(Nos.51339033 and 51279087)
文摘The effect of strain rate on the tensile strength of defective monocrystalline silicon (Si) nanorods is studied with the molecular dynamics method. The strain rate applied to the nanorods is varied from l0T to 1014 s-1, and the atomic interactions among the Si atoms are described by the Stillinger-Weber (SW) potential functions. The tensile strength of the ideal Si nanorod is shown to be strongly strain rate dependent and increasing with the strain rate. The failure pattern also shows strain rate dependence, indicating that increased strain rates gradually suppress unsuitable relaxation and dissipation mechanisms because of the accompanying larger external loadings. Furthermore, the effects of intrinsic material parameters (i.e., the cutoff radius of SW potential function) and defects (i.e., inevitable surface defects and internal preinstalled defects) are investigated. It is revealed that the effect of strain rate on the tensile strength of Si nanorod is influenced by both the intrinsic physical properties of the material and the distribution of the initial defects, with specific surface defects appearing to be more important to nanostructure design.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.