期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Active Learning-Enhanced Deep Ensemble Framework for Human Activity Recognition Using Spatio-Textural Features
1
作者 Lakshmi Alekhya Jandhyam Ragupathy Rengaswamy Narayana Satyala 《Computer Modeling in Engineering & Sciences》 2025年第9期3679-3714,共36页
Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computation... Human Activity Recognition(HAR)has become increasingly critical in civic surveillance,medical care monitoring,and institutional protection.Current deep learning-based approaches often suffer from excessive computational complexity,limited generalizability under varying conditions,and compromised real-time performance.To counter these,this paper introduces an Active Learning-aided Heuristic Deep Spatio-Textural Ensemble Learning(ALH-DSEL)framework.The model initially identifies keyframes from the surveillance videos with a Multi-Constraint Active Learning(MCAL)approach,with features extracted from DenseNet121.The frames are then segmented employing an optimized Fuzzy C-Means clustering algorithm with Firefly to identify areas of interest.A deep ensemble feature extractor,comprising DenseNet121,EfficientNet-B7,MobileNet,and GLCM,extracts varied spatial and textural features.Fused characteristics are enhanced through PCA and Min-Max normalization and discriminated by a maximum voting ensemble of RF,AdaBoost,and XGBoost.The experimental results show that ALH-DSEL provides higher accuracy,precision,recall,and F1-score,validating its superiority for real-time HAR in surveillance scenarios. 展开更多
关键词 Human activity prediction deep ensemble feature active learning E2E classifier surveillance systems
在线阅读 下载PDF
Augmented Deep-Feature-Based Ear Recognition Using Increased Discriminatory Soft Biometrics
2
作者 Emad Sami Jaha 《Computer Modeling in Engineering & Sciences》 2025年第9期3645-3678,共34页
The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models ... The human ear has been substantiated as a viable nonintrusive biometric modality for identification or verification.Among many feasible techniques for ear biometric recognition,convolutional neural network(CNN)models have recently offered high-performance and reliable systems.However,their performance can still be further improved using the capabilities of soft biometrics,a research question yet to be investigated.This research aims to augment the traditional CNN-based ear recognition performance by adding increased discriminatory ear soft biometric traits.It proposes a novel framework of augmented ear identification/verification using a group of discriminative categorical soft biometrics and deriving new,more perceptive,comparative soft biometrics for feature-level fusion with hard biometric deep features.It conducts several identification and verification experiments for performance evaluation,analysis,and comparison while varying ear image datasets,hard biometric deep-feature extractors,soft biometric augmentation methods,and classifiers used.The experimental work yields promising results,reaching up to 99.94%accuracy and up to 14%improvement using the AMI and AMIC datasets,along with their corresponding soft biometric label data.The results confirm the proposed augmented approaches’superiority over their standard counterparts and emphasize the robustness of the new ear comparative soft biometrics over their categorical peers. 展开更多
关键词 Ear recognition soft biometrics human identification human verification comparative labeling ranking SVM deep features feature-level fusion convolutional neural networks(CNNs) deep learning
在线阅读 下载PDF
Prediction of Pediatric Sepsis Using a Deep Encoding Network with Cross Features
3
作者 陈潇 张瑞 +1 位作者 汤心溢 钱娟 《Journal of Shanghai Jiaotong university(Science)》 EI 2024年第1期131-140,共10页
Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacillicul... Sepsis poses a serious threat to health of children in pediatric intensive care unit.The mortality from pediatric sepsis can be effectively reduced through in-time diagnosis and therapeutic intervention.The bacilliculture detection method is too time-consuming to receive timely treatment.In this research,we propose a new framework:a deep encoding network with cross features(CF-DEN)that enables accurate early detection of sepsis.Cross features are automatically constructed via the gradient boosting decision tree and distilled into the deep encoding network(DEN)we designed.The DEN is aimed at learning sufficiently effective representation from clinical test data.Each layer of the DEN fltrates the features involved in computation at current layer via attention mechanism and outputs the current prediction which is additive layer by layer to obtain the embedding feature at last layer.The framework takes the advantage of tree-based method and neural network method to extract effective representation from small clinical dataset and obtain accurate prediction in order to prompt patient to get timely treatment.We evaluate the performance of the framework on the dataset collected from Shanghai Children's Medical Center.Compared with common machine learning methods,our method achieves the increase on F1-score by 16.06%on the test set. 展开更多
关键词 pediatric sepsis gradient boosting decision tree cross feature neural network deep encoding network with cross features(CF-DEN)
原文传递
Multiclass Stomach Diseases Classication Using Deep Learning Features Optimization 被引量:3
4
作者 Muhammad Attique Khan Abdul Majid +4 位作者 Nazar Hussain Majed Alhaisoni Yu-Dong Zhang Seifedine Kadry Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2021年第6期3381-3399,共19页
In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomac... In the area of medical image processing,stomach cancer is one of the most important cancers which need to be diagnose at the early stage.In this paper,an optimized deep learning method is presented for multiple stomach disease classication.The proposed method work in few important steps—preprocessing using the fusion of ltering images along with Ant Colony Optimization(ACO),deep transfer learning-based features extraction,optimization of deep extracted features using nature-inspired algorithms,and nally fusion of optimal vectors and classication using Multi-Layered Perceptron Neural Network(MLNN).In the feature extraction step,pretrained Inception V3 is utilized and retrained on selected stomach infection classes using the deep transfer learning step.Later on,the activation function is applied to Global Average Pool(GAP)for feature extraction.However,the extracted features are optimized through two different nature-inspired algorithms—Particle Swarm Optimization(PSO)with dynamic tness function and Crow Search Algorithm(CSA).Hence,both methods’output is fused by a maximal value approach and classied the fused feature vector by MLNN.Two datasets are used to evaluate the proposed method—CUI WahStomach Diseases and Combined dataset and achieved an average accuracy of 99.5%.The comparison with existing techniques,it is shown that the proposed method shows signicant performance. 展开更多
关键词 Stomach infections deep features features optimization FUSION classication
在线阅读 下载PDF
ECO++:Adaptive deep feature fusion target tracking method in complex scene
5
作者 Yuhan Liu He Yan +2 位作者 Qilie Liu Wei Zhang Junbin Huang 《Digital Communications and Networks》 CSCD 2024年第5期1352-1364,共13页
Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded an... Efficient Convolution Operator(ECO)algorithms have achieved impressive performances in visual tracking.However,its feature extraction network of ECO is unconducive for capturing the correlation features of occluded and blurred targets between long-range complex scene frames.More so,its fixed weight fusion strategy does not use the complementary properties of deep and shallow features.In this paper,we propose a new target tracking method,namely ECO++,using deep feature adaptive fusion in a complex scene,in the following two aspects:First,we constructed a new temporal convolution mode and used it to replace the underlying convolution layer in Conformer network to obtain an improved Conformer network.Second,we adaptively fuse the deep features,which output through the improved Conformer network,by combining the Peak to Sidelobe Ratio(PSR),frame smoothness scores and adaptive adjustment weight.Extensive experiments on the OTB-2013,OTB-2015,UAV123,and VOT2019 benchmarks demonstrate that the proposed approach outperforms the state-of-the-art algorithms in tracking accuracy and robustness in complex scenes with occluded,blurred,and fast-moving targets. 展开更多
关键词 deep features Adaptive feature fusion Correlation filtering Target tracking Data augmentation
在线阅读 下载PDF
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:37
6
作者 Xiong-Qi Pang Cheng-Zao Jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap... As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 Petroliferous basin deep petroleum geology features Hydrocarbon accumulation Petroleum exploration Petroleum resources
原文传递
Human Action Recognition Based on Supervised Class-Specific Dictionary Learning with Deep Convolutional Neural Network Features 被引量:6
7
作者 Binjie Gu 《Computers, Materials & Continua》 SCIE EI 2020年第4期243-262,共20页
Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The ma... Human action recognition under complex environment is a challenging work.Recently,sparse representation has achieved excellent results of dealing with human action recognition problem under different conditions.The main idea of sparse representation classification is to construct a general classification scheme where the training samples of each class can be considered as the dictionary to express the query class,and the minimal reconstruction error indicates its corresponding class.However,how to learn a discriminative dictionary is still a difficult work.In this work,we make two contributions.First,we build a new and robust human action recognition framework by combining one modified sparse classification model and deep convolutional neural network(CNN)features.Secondly,we construct a novel classification model which consists of the representation-constrained term and the coefficients incoherence term.Experimental results on benchmark datasets show that our modified model can obtain competitive results in comparison to other state-of-the-art models. 展开更多
关键词 Action recognition deep CNN features sparse model supervised dictionary learning
在线阅读 下载PDF
Multi-object tracking based on deep associated features for UAV applications 被引量:4
8
作者 XIONG Lingyu TANG Guijin 《Optoelectronics Letters》 EI 2023年第2期105-111,共7页
Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resol... Multi-object tracking(MOT) techniques have been increasingly applied in a diverse range of tasks. Unmanned aerial vehicle(UAV) is one of its typical application scenarios. Due to the scene complexity and the low resolution of moving targets in UAV applications, it is difficult to extract target features and identify them. In order to solve this problem, we propose a new re-identification(re-ID) network to extract association features for tracking in the association stage. Moreover, in order to reduce the complexity of detection model, we perform the lightweight optimization for it. Experimental results show that the proposed re-ID network can effectively reduce the number of identity switches, and surpass current state-of-the-art algorithms. In the meantime, the optimized detector can increase the speed by 27% owing to its lightweight design, which enables it to further meet the requirements of UAV tracking tasks. 展开更多
关键词 Multi-object tracking deep associated features UAV applications
原文传递
Human Gait Recognition Based on Sequential Deep Learning and Best Features Selection 被引量:1
9
作者 Ch Avais Hanif Muhammad Ali Mughal +3 位作者 Muhammad Attique Khan Usman Tariq Ye Jin Kim Jae-Hyuk Cha 《Computers, Materials & Continua》 SCIE EI 2023年第6期5123-5140,共18页
Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remain... Gait recognition is an active research area that uses a walking theme to identify the subject correctly.Human Gait Recognition(HGR)is performed without any cooperation from the individual.However,in practice,it remains a challenging task under diverse walking sequences due to the covariant factors such as normal walking and walking with wearing a coat.Researchers,over the years,have worked on successfully identifying subjects using different techniques,but there is still room for improvement in accuracy due to these covariant factors.This paper proposes an automated model-free framework for human gait recognition in this article.There are a few critical steps in the proposed method.Firstly,optical flow-based motion region esti-mation and dynamic coordinates-based cropping are performed.The second step involves training a fine-tuned pre-trained MobileNetV2 model on both original and optical flow cropped frames;the training has been conducted using static hyperparameters.The third step proposed a fusion technique known as normal distribution serially fusion.In the fourth step,a better optimization algorithm is applied to select the best features,which are then classified using a Bi-Layered neural network.Three publicly available datasets,CASIA A,CASIA B,and CASIA C,were used in the experimental process and obtained average accuracies of 99.6%,91.6%,and 95.02%,respectively.The proposed framework has achieved improved accuracy compared to the other methods. 展开更多
关键词 Human gait recognition optical flow deep learning features FUSION feature selection
在线阅读 下载PDF
Constitution identification model in traditional Chinese medicine based on multiple features
10
作者 XU Anying WANG Tianshu +7 位作者 YANG Tao HAN Xiao ZHANG Xiaoyu WANG Ziyan ZHANG Qi LI Xiao SHANG Hongcai HU Kongfa 《Digital Chinese Medicine》 CAS CSCD 2024年第2期108-119,共12页
Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical... Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized. 展开更多
关键词 Traditional Chinese medicine(TCM) Constitution identification deep feature Facial complexion feature Body shape feature Multiple features
暂未订购
An Improved Deep Fusion CNN for Image Recognition 被引量:7
11
作者 Rongyu Chen Lili Pan +3 位作者 Cong Li Yan Zhou Aibin Chen Eric Beckman 《Computers, Materials & Continua》 SCIE EI 2020年第11期1691-1706,共16页
With the development of Deep Convolutional Neural Networks(DCNNs),the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs.Previous studies h... With the development of Deep Convolutional Neural Networks(DCNNs),the extracted features for image recognition tasks have shifted from low-level features to the high-level semantic features of DCNNs.Previous studies have shown that the deeper the network is,the more abstract the features are.However,the recognition ability of deep features would be limited by insufficient training samples.To address this problem,this paper derives an improved Deep Fusion Convolutional Neural Network(DF-Net)which can make full use of the differences and complementarities during network learning and enhance feature expression under the condition of limited datasets.Specifically,DF-Net organizes two identical subnets to extract features from the input image in parallel,and then a well-designed fusion module is introduced to the deep layer of DF-Net to fuse the subnet’s features in multi-scale.Thus,the more complex mappings are created and the more abundant and accurate fusion features can be extracted to improve recognition accuracy.Furthermore,a corresponding training strategy is also proposed to speed up the convergence and reduce the computation overhead of network training.Finally,DF-Nets based on the well-known ResNet,DenseNet and MobileNetV2 are evaluated on CIFAR100,Stanford Dogs,and UECFOOD-100.Theoretical analysis and experimental results strongly demonstrate that DF-Net enhances the performance of DCNNs and increases the accuracy of image recognition. 展开更多
关键词 deep convolutional neural networks deep features image recognition deep fusion feature fusion.
在线阅读 下载PDF
A Novel Deep Neural Network for Intracranial Haemorrhage Detection and Classification 被引量:3
12
作者 D.Venugopal T.Jayasankar +4 位作者 Mohamed Yacin Sikkandar Mohamed Ibrahim Waly Irina V.Pustokhina Denis A.Pustokhin K.Shankar 《Computers, Materials & Continua》 SCIE EI 2021年第9期2877-2893,共17页
Data fusion is one of the challenging issues,the healthcare sector is facing in the recent years.Proper diagnosis from digital imagery and treatment are deemed to be the right solution.Intracerebral Haemorrhage(ICH),a... Data fusion is one of the challenging issues,the healthcare sector is facing in the recent years.Proper diagnosis from digital imagery and treatment are deemed to be the right solution.Intracerebral Haemorrhage(ICH),a condition characterized by injury of blood vessels in brain tissues,is one of the important reasons for stroke.Images generated by X-rays and Computed Tomography(CT)are widely used for estimating the size and location of hemorrhages.Radiologists use manual planimetry,a time-consuming process for segmenting CT scan images.Deep Learning(DL)is the most preferred method to increase the efficiency of diagnosing ICH.In this paper,the researcher presents a unique multi-modal data fusion-based feature extraction technique with Deep Learning(DL)model,abbreviated as FFE-DL for Intracranial Haemorrhage Detection and Classification,also known as FFEDL-ICH.The proposed FFEDL-ICH model has four stages namely,preprocessing,image segmentation,feature extraction,and classification.The input image is first preprocessed using the Gaussian Filtering(GF)technique to remove noise.Secondly,the Density-based Fuzzy C-Means(DFCM)algorithm is used to segment the images.Furthermore,the Fusion-based Feature Extraction model is implemented with handcrafted feature(Local Binary Patterns)and deep features(Residual Network-152)to extract useful features.Finally,Deep Neural Network(DNN)is implemented as a classification technique to differentiate multiple classes of ICH.The researchers,in the current study,used benchmark Intracranial Haemorrhage dataset and simulated the FFEDL-ICH model to assess its diagnostic performance.The findings of the study revealed that the proposed FFEDL-ICH model has the ability to outperform existing models as there is a significant improvement in its performance.For future researches,the researcher recommends the performance improvement of FFEDL-ICH model using learning rate scheduling techniques for DNN. 展开更多
关键词 Intracerebral hemorrhage fusion model feature extraction deep features CLASSIFICATION
在线阅读 下载PDF
TGNet:Intelligent Identification of Thunderstorm Wind Gusts Using Multimodal Fusion 被引量:2
13
作者 Xiaowen ZHANG Yongguang ZHENG +3 位作者 Hengde ZHANG Jie SHENG Bingjian LU Shuo FENG 《Advances in Atmospheric Sciences》 2025年第1期146-164,共19页
Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.There... Thunderstorm wind gusts are small in scale,typically occurring within a range of a few kilometers.It is extremely challenging to monitor and forecast thunderstorm wind gusts using only automatic weather stations.Therefore,it is necessary to establish thunderstorm wind gust identification techniques based on multisource high-resolution observations.This paper introduces a new algorithm,called thunderstorm wind gust identification network(TGNet).It leverages multimodal feature fusion to fuse the temporal and spatial features of thunderstorm wind gust events.The shapelet transform is first used to extract the temporal features of wind speeds from automatic weather stations,which is aimed at distinguishing thunderstorm wind gusts from those caused by synoptic-scale systems or typhoons.Then,the encoder,structured upon the U-shaped network(U-Net)and incorporating recurrent residual convolutional blocks(R2U-Net),is employed to extract the corresponding spatial convective characteristics of satellite,radar,and lightning observations.Finally,by using the multimodal deep fusion module based on multi-head cross-attention,the temporal features of wind speed at each automatic weather station are incorporated into the spatial features to obtain 10-minutely classification of thunderstorm wind gusts.TGNet products have high accuracy,with a critical success index reaching 0.77.Compared with those of U-Net and R2U-Net,the false alarm rate of TGNet products decreases by 31.28%and 24.15%,respectively.The new algorithm provides grid products of thunderstorm wind gusts with a spatial resolution of 0.01°,updated every 10minutes.The results are finer and more accurate,thereby helping to improve the accuracy of operational warnings for thunderstorm wind gusts. 展开更多
关键词 thunderstorm wind gusts shapelet transform multimodal deep feature fusion
在线阅读 下载PDF
Automated White Blood Cell Disease Recognition Using Lightweight Deep Learning 被引量:1
14
作者 Abdullah Alqahtani Shtwai Alsubai +3 位作者 Mohemmed Sha Muhammad Attique Khan Majed Alhaisoni Syed Rameez Naqvi 《Computer Systems Science & Engineering》 SCIE EI 2023年第7期107-123,共17页
White blood cells(WBC)are immune system cells,which is why they are also known as immune cells.They protect the human body from a variety of dangerous diseases and outside invaders.The majority of WBCs come from red b... White blood cells(WBC)are immune system cells,which is why they are also known as immune cells.They protect the human body from a variety of dangerous diseases and outside invaders.The majority of WBCs come from red bone marrow,although some come from other important organs in the body.Because manual diagnosis of blood disorders is difficult,it is necessary to design a computerized technique.Researchers have introduced various automated strategies in recent years,but they still face several obstacles,such as imbalanced datasets,incorrect feature selection,and incorrect deep model selection.We proposed an automated deep learning approach for classifying white blood disorders in this paper.The data augmentation approach is initially used to increase the size of a dataset.Then,a Darknet-53 pre-trained deep learning model is used and finetuned according to the nature of the chosen dataset.On the fine-tuned model,transfer learning is used,and features engineering is done on the global average pooling layer.The retrieved characteristics are subsequently improved with a specified number of iterations using a hybrid reformed binary grey wolf optimization technique.Following that,machine learning classifiers are used to classify the selected best features for final classification.The experiment was carried out using a dataset of increased blood diseases imaging and resulted in an improved accuracy of over 99%. 展开更多
关键词 White blood cells augmentation deep features feature selection CLASSIFICATION
在线阅读 下载PDF
Image Retrieval Based on Deep Feature Extraction and Reduction with Improved CNN and PCA 被引量:2
15
作者 Rongyu Chen Lili Pan +1 位作者 Yan Zhou Qianhui Lei 《Journal of Information Hiding and Privacy Protection》 2020年第2期67-76,共10页
With the rapid development of information technology,the speed and efficiency of image retrieval are increasingly required in many fields,and a compelling image retrieval method is critical for the development of info... With the rapid development of information technology,the speed and efficiency of image retrieval are increasingly required in many fields,and a compelling image retrieval method is critical for the development of information.Feature extraction based on deep learning has become dominant in image retrieval due to their discrimination more complete,information more complementary and higher precision.However,the high-dimension deep features extracted by CNNs(convolutional neural networks)limits the retrieval efficiency and makes it difficult to satisfy the requirements of existing image retrieval.To solving this problem,the high-dimension feature reduction technology is proposed with improved CNN and PCA quadratic dimensionality reduction.Firstly,in the last layer of the classical networks,this study makes a well-designed DR-Module(dimensionality reduction module)to compress the number of channels of the feature map as much as possible,and ensures the amount of information.Secondly,the deep features are compressed again with PCA(Principal Components Analysis),and the compression ratios of the two dimensionality reductions are reduced,respectively.Therefore,the retrieval efficiency is dramatically improved.Finally,it is proved on the Cifar100 and Caltech101 datasets that the novel method not only improves the retrieval accuracy but also enhances the retrieval efficiency.Experimental results strongly demonstrate that the proposed method performs well in small and medium-sized datasets. 展开更多
关键词 Image retrieval deep features convolutional neural networks principal components analysis
在线阅读 下载PDF
Human Verification over Activity Analysis via Deep Data Mining
16
作者 Kumar Abhishek Sheikh Badar ud din Tahir 《Computers, Materials & Continua》 SCIE EI 2023年第4期1391-1409,共19页
Human verification and activity analysis(HVAA)are primarily employed to observe,track,and monitor human motion patterns using redgreen-blue(RGB)images and videos.Interpreting human interaction using RGB images is one ... Human verification and activity analysis(HVAA)are primarily employed to observe,track,and monitor human motion patterns using redgreen-blue(RGB)images and videos.Interpreting human interaction using RGB images is one of the most complex machine learning tasks in recent times.Numerous models rely on various parameters,such as the detection rate,position,and direction of human body components in RGB images.This paper presents robust human activity analysis for event recognition via the extraction of contextual intelligence-based features.To use human interaction image sequences as input data,we first perform a few denoising steps.Then,human-to-human analyses are employed to deliver more precise results.This phase follows feature engineering techniques,including diverse feature selection.Next,we used the graph mining method for feature optimization and AdaBoost for classification.We tested our proposed HVAA model on two benchmark datasets.The testing of the proposed HVAA system exhibited a mean accuracy of 92.15%for the Sport Videos in theWild(SVW)dataset.The second benchmark dataset,UT-interaction,had a mean accuracy of 92.83%.Therefore,these results demonstrated a better recognition rate and outperformed other novel techniques in body part tracking and event detection.The proposed HVAA system can be utilized in numerous real-world applications including,healthcare,surveillance,task monitoring,atomic actions,gesture and posture analysis. 展开更多
关键词 ADABOOST classification deep features mining graph mining human detection human verification
在线阅读 下载PDF
Human Gait Recognition:A Deep Learning and Best Feature Selection Framework
17
作者 Asif Mehmood Muhammad Attique Khan +4 位作者 Usman Tariq Chang-Won Jeong Yunyoung Nam Reham R.Mostafa Amira ElZeiny 《Computers, Materials & Continua》 SCIE EI 2022年第1期343-360,共18页
Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the s... Background—Human Gait Recognition(HGR)is an approach based on biometric and is being widely used for surveillance.HGR is adopted by researchers for the past several decades.Several factors are there that affect the system performance such as the walking variation due to clothes,a person carrying some luggage,variations in the view angle.Proposed—In this work,a new method is introduced to overcome different problems of HGR.A hybrid method is proposed or efficient HGR using deep learning and selection of best features.Four major steps are involved in this work-preprocessing of the video frames,manipulation of the pre-trained CNN model VGG-16 for the computation of the features,removing redundant features extracted from the CNN model,and classification.In the reduction of irrelevant features Principal Score and Kurtosis based approach is proposed named PSbK.After that,the features of PSbK are fused in one materix.Finally,this fused vector is fed to the One against All Multi Support Vector Machine(OAMSVM)classifier for the final results.Results—The system is evaluated by utilizing the CASIA B database and six angles 00◦,18◦,36◦,54◦,72◦,and 90◦are used and attained the accuracy of 95.80%,96.0%,95.90%,96.20%,95.60%,and 95.50%,respectively.Conclusion—The comparison with recent methods show the proposed method work better. 展开更多
关键词 Human gait recognition deep features extraction features fusion features selection
在线阅读 下载PDF
Research on Crop Image Classification and Recognition Based on Improved HRNet
18
作者 Min Ji Shucheng Yang 《Computers, Materials & Continua》 2025年第8期3075-3103,共29页
In agricultural production,crop images are commonly used for the classification and identification of various crops.However,several challenges arise,including low image clarity,elevated noise levels,low accuracy,and p... In agricultural production,crop images are commonly used for the classification and identification of various crops.However,several challenges arise,including low image clarity,elevated noise levels,low accuracy,and poor robustness of existing classification models.To address these issues,this research proposes an innovative crop image classification model named Lap-FEHRNet,which integrates a Laplacian Pyramid Super Resolution Network(LapSRN)with a feature enhancement high-resolution network based on attention mechanisms(FEHRNet).To mitigate noise interference,this research incorporates the LapSRN network,which utilizes a Laplacian pyramid structure to extract multi-level feature details from low-resolution images through a systematic layer-by-layer amplification and pixel detail superposition process.This gradual reconstruction enhances the high-frequency information of the image,enabling super-resolution reconstruction of low-quality images.To obtain a broader range of comprehensive and diverse features,this research employs the FEHRNetmodel for both deep and shallow feature extraction.This approach results in features that encapsulate multi-scale information and integrate both deep and shallow insights.To effectively fuse these complementary features,this research introduces an attention mechanism during the feature enhancement stage.This mechanism highlights important regions within the image,assigning greater weights to salient features and resulting in a more comprehensive and effective image feature representation.Consequently,the accuracy of image classification is significantly improved.Experimental results demonstrate that the Lap-FEHRNetmodel achieves impressive classification accuracies of 98.8%on the crop classification dataset and 98.57%on the rice leaf disease dataset,underscoring the model’s outstanding accuracy,robustness,and generalization capability. 展开更多
关键词 Image reconstruction deep and shallow features feature enhancement LapSRN HRNet
在线阅读 下载PDF
A Hybrid Deep Fused Learning Approach to Segregate Infectious Diseases
19
作者 Jawad Rasheed Shtwai Alsubai 《Computers, Materials & Continua》 SCIE EI 2023年第2期4239-4259,共21页
Humankind is facing another deadliest pandemic of all times in history,caused by COVID-19.Apart from this challenging pandemic,World Health Organization(WHO)considers tuberculosis(TB)as a preeminent infectious disease... Humankind is facing another deadliest pandemic of all times in history,caused by COVID-19.Apart from this challenging pandemic,World Health Organization(WHO)considers tuberculosis(TB)as a preeminent infectious disease due to its high infection rate.Generally,both TB and COVID-19 severely affect the lungs,thus hardening the job of medical practitioners who can often misidentify these diseases in the current situation.Therefore,the time of need calls for an immediate and meticulous automatic diagnostic tool that can accurately discriminate both diseases.As one of the preliminary smart health systems that examine three clinical states(COVID-19,TB,and normal cases),this study proposes an amalgam of image filtering,data-augmentation technique,transfer learning-based approach,and advanced deep-learning classifiers to effectively segregate these diseases.It first employed a generative adversarial network(GAN)and Crimmins speckle removal filter on X-ray images to overcome the issue of limited data and noise.Each pre-processed image is then converted into red,green,and blue(RGB)and Commission Internationale de l’Elcairage(CIE)color spaces from which deep fused features are formed by extracting relevant features using DenseNet121 and ResNet50.Each feature extractor extracts 1000 most useful features which are then fused and finally fed to two variants of recurrent neural network(RNN)classifiers for precise discrimination of threeclinical states.Comparative analysis showed that the proposed Bi-directional long-short-term-memory(Bi-LSTM)model dominated the long-short-termmemory(LSTM)network by attaining an overall accuracy of 98.22%for the three-class classification task,whereas LSTM hardly achieved 94.22%accuracy on the test dataset. 展开更多
关键词 Computer-aided diagnosis decision support system deep transfer learning deep fused features TUBERCULOSIS COVID-19
在线阅读 下载PDF
Individual Identification of Dairy Cows Based on Deep Feature Extrac-tion and Matching
20
作者 Shen Wei-zheng Sun Jia +4 位作者 Liang Chen Shi Wei Guo Jin-yan Zhang Zhe Zhang Yong-gen 《Journal of Northeast Agricultural University(English Edition)》 CAS 2022年第3期85-96,共12页
Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional n... Individual identification of dairy cows is the prerequisite for automatic analysis and intelligent perception of dairy cows'behavior.At present,individual identification of dairy cows based on deep convolutional neural network had the disadvantages in prolonged training at the additions of new cows samples.Therefore,a cow individual identification framework was proposed based on deep feature extraction and matching,and the individual identification of dairy cows based on this framework could avoid repeated training.Firstly,the trained convolutional neural network model was used as the feature extractor;secondly,the feature extraction was used to extract features and stored the features into the template feature library to complete the enrollment;finally,the identifies of dairy cows were identified.Based on this framework,when new cows joined the herd,enrollment could be completed quickly.In order to evaluate the application performance of this method in closed-set and open-set individual identification of dairy cows,back images of 524 cows were collected,among which the back images of 150 cows were selected as the training data to train feature extractor.The data of the remaining 374 cows were used to generate the template data set and the data to be identified.The experiment results showed that in the closed-set individual identification of dairy cows,the highest identification accuracy of top-1 was 99.73%,the highest identification accuracy from top-2 to top-5 was 100%,and the identification time of a single cow was 0.601 s,this method was verified to be effective.In the open-set individual identification of dairy cows,the recall was 90.38%,and the accuracy was 89.46%.When false accept rate(FAR)=0.05,true accept rate(TAR)=84.07%,this method was verified that the application had certain research value in open-set individual identification of dairy cows,which provided a certain idea for the application of individual identification in the field of intelligent animal husbandry. 展开更多
关键词 cow individual identification convolutional neural networks deep feature extraction feature matching
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部