期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
Recent advances in deep exploration:Report on the international symposium on deep exploration into the lithosphere 被引量:2
1
作者 Shuwen Dong Raymond Willemann +2 位作者 Thomas Wiersberg Qi Zhou Xuanhua Chen 《Episodes》 2012年第2期I0002-I0002,354,355,共3页
Beijing,China,16-18 November,2011 An“International Symposium on Deep Exploration into the Lithosphere”(ISDEL),hosted and sponsored by the Chinese Academy of Geological Sciences(CAGS),and national program SinoProbe–... Beijing,China,16-18 November,2011 An“International Symposium on Deep Exploration into the Lithosphere”(ISDEL),hosted and sponsored by the Chinese Academy of Geological Sciences(CAGS),and national program SinoProbe–Deep Exploration in China,co-sponsored by the Incorporated Research Institutions for Seismology(IRIS),International Continental Scientific Drilling Program(ICDP)and International Lithosphere Program(ILP)was held in Beijing,from 16 to 18 November,2011(Fig.1). 展开更多
关键词 incorporated research institutions seismology iris international continental scientific drilling international symposium LITHOSPHERE deep exploration lithosphere isdel hosted ISOTOPES deep exploration China international lithosphere program ilp
在线阅读 下载PDF
Report on International Meeting on Precambrian Evolution and Deep Exploration of the Continental Lithosphere
2
作者 Dunyi Liu Alfred Kröoner 《Episodes》 2013年第4期298-299,共2页
The Beijing SHRIMP Center,in association with the International Precambrian Research Center of China and SinoProbe,Deep Exploration in China,organized an international meeting on“Precambrian Evolution and Deep Explor... The Beijing SHRIMP Center,in association with the International Precambrian Research Center of China and SinoProbe,Deep Exploration in China,organized an international meeting on“Precambrian Evolution and Deep Exploration of the Continental Lithosphere”on 7-9 October 2013 in the Loong Palace Hotel and Resort,Changping,Beijing.The meeting celebrated the opening of the new SHRIMP Laboratory Building in the Life Science Park of Beijing(Fig.1)and commemorated 30 years of collaborative Precambrian Research in China that began in 1983 with a now famous international meeting held at the Temple of the Sleeping Buddah. 展开更多
关键词 deep exploration International Precambrian Research Center China Beijing Shrimp Center deep exploration continental lithosphere precambrian evolution continental lithosphere Sinoprobe international meeting
在线阅读 下载PDF
Shell/Benton/CNPC Venture Drills First Deep Exploration Well in Liaohe
3
《China Oil & Gas》 CAS 1999年第2期132-132,共1页
关键词 CNPC Shell/Benton/CNPC Venture Drills First deep exploration Well in Liaohe
在线阅读 下载PDF
A Breakthrough in Deep Exploration in Kokyar,Tarim Basin
4
《China Oil & Gas》 CAS 1996年第2期112-112,共1页
ABreakthroughinDeepExplorationinKokyar,TarimBasin¥//TheKokyaroilfieldlocatedinthesouthwestdepressionofTarimB... ABreakthroughinDeepExplorationinKokyar,TarimBasin¥//TheKokyaroilfieldlocatedinthesouthwestdepressionofTarimBasin,wasdiscovere... 展开更多
关键词 A Breakthrough in deep exploration in Kokyar Tarim Basin
在线阅读 下载PDF
Multi-detachment-controlled thrust structures and deep hydrocarbon exploration targets in southern margin of Junggar Basin,NW China
5
作者 YU Baoli JIA Chengzao +6 位作者 LIU Keyu DENG Yong WANG Wei CHEN Peng LI Chao CHEN Jia GUO Boyang 《Petroleum Exploration and Development》 2025年第3期663-679,共17页
For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distr... For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets. 展开更多
关键词 southern margin of Junggar Basin foreland thrust belt trust structure detachment layer structural deformation mechanism structural evolution deep lower assemblages hydrocarbon accumulation deep hydrocarbon exploration target
在线阅读 下载PDF
In-situ temperature-pressure preserved coring for onshore deep oil and gas exploration:research on the design principles and mechanical properties of the temperature-preserved core chamber
6
作者 Yi-Wei Zhang Jia-Nan Li +6 位作者 Zhi-Qiang He Ling Chen Cong Li Da Guo Ding-Ming Wang Xin Fang He-Ping Xie 《Petroleum Science》 2025年第6期2438-2456,共19页
A novel temperature-preserved core chamber designed for depths exceeding 5000 m has been developed to enhance the scientific understanding of deep oil and gas reservoirs.This temperature-preserved core chamber employs... A novel temperature-preserved core chamber designed for depths exceeding 5000 m has been developed to enhance the scientific understanding of deep oil and gas reservoirs.This temperature-preserved core chamber employs an innovative vacuum layer for temperature preservation and is compatible with a temperature-pressure preserved coring system.The design principles and key parameters of the temperature-preserved core chamber were determined through static analysis.Numerical simulations assessed the mechanical properties of 70,85,and 100 MPa core chambers under conditions of 120-150℃.The results demonstrate that the temperature-preserved core chambers withstand the applied stresses without plastic deformation,and the vacuum layer maintains its integrity under these conditions.A 70 MPa class core chamber prototype was manufactured,and system integration tests were performed on a self-developed in-situ coring platform.The system demonstrated stable operation at 70 MPa for 120 min,with pressure fluctuations within 5%.Additionally,the integrated system operated without interference,enabling the successful extraction of cores with a 50 mm diameter.These findings provide valuable theoretical guidance and design recommendations for advancing oil and gas in-situ temperature-pressure preserved coring technologies in high-temperature and high-pressure environments. 展开更多
关键词 In-situ coring Temperature-pressure preserved coring deep oil and gas exploration Vacuum layer Onshore drilling
原文传递
Gold Occurrence and Mineral Assemblages in the BuriticáGold Deposit,Colombia:Implications for Ore-Forming Environment and Deep Exploration
7
作者 Wenyuan Liu Xianwei Sun +5 位作者 Bo Xing Xiaohuan Luo Jingwen Chen Liyuan Wang Yongsheng Hu Lingwang Lin 《Journal of Earth Science》 2025年第6期2812-2818,共7页
0 INTRODUCTION The Andean orogenic belt,a globally significant active continental margin(Lamb et al.,1997),extends in a north-south direction along the western coast of South America.The Colombian Andes,located in the... 0 INTRODUCTION The Andean orogenic belt,a globally significant active continental margin(Lamb et al.,1997),extends in a north-south direction along the western coast of South America.The Colombian Andes,located in the northern segment of this orogen,constitute a vital component and host abundant Au-Cu resources.Three principal Au-Cu metallogenic belts(Chocó,Middle Cauca,and Antioquia)are developed from west to east across Colombia(Lesage et al.,2013;Sillitoe,2008;Figure 1a). 展开更多
关键词 deep exploration active continental margin lamb colombian andeslocated colombia mineral assemblages ore forming environment andean orogenic belta gold occurrence
原文传递
Latest Scientific Results of China's Lunar and Deep Space Exploration(2022–2024)
8
作者 XU Lin LI Lei +8 位作者 LIU Jianzhong LIN Honglei LI Yang LIU Yang XIE Lianghai ZHANG Jinhai QIAO Fuhao HAN Juanjuan ZOU Yongliao 《空间科学学报》 CAS CSCD 北大核心 2024年第4期622-632,共11页
China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of th... China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results. 展开更多
关键词 Lunar and deep space exploration of China Chang’E-4 mission Chang’E-5 mission Tianwen-1 mission
在线阅读 下载PDF
Application of TEM Based on HTS SQUID Magnetometer in Deep Geological Structure Exploration in the Baiyun Gold Deposit,NE China 被引量:3
9
作者 Junjie Wu Xiaodong Chen +6 位作者 Yi Yang Qingquan Zhi Xingchun Wang Jie Zhang Xiaohong Deng Yi Zhao Yue Huang 《Journal of Earth Science》 SCIE CAS CSCD 2021年第1期1-7,共7页
Exploration of deep mineralization,particularly where the mineralization of interest is covered by a conductive overburden,is still a challenge for the conventional transient electromagnetic(TEM)method,which measures ... Exploration of deep mineralization,particularly where the mineralization of interest is covered by a conductive overburden,is still a challenge for the conventional transient electromagnetic(TEM)method,which measures TEM response using induction coils as the sensor.However,sensors such as fluxgate and superconductive quantum interfere device(SQUID)magnetometers can measure the B-field directly,which can provide more reliable deep information for mineralization exploration.In this paper,we report on the research and development of our newly developed high-temperature su-perconductor(HTS)SQUID magnetometer,which is cooled by liquid nitrogen at 77 K,and its applica-tion in TEM measurement for deep exploration in a gold deposit in China.This improved SQUID magnetometer version has a good performance with noise(60 fT/√Hz),slew rate(0.8 mT/S),dynamic range(100 dB),sensitivity(6.25 mV/nT),and bandwidth(DC-20 kHz).To find deep and peripheral ore in the Baiyun gold deposit located in Liaoning Province,NE China,both the SQUID magnetometer and induction coil were used for TEM data acquisition.Results show that TEM can detect the distribution of local strata and the faults contained within them.Results also indicate that the SQUID magnetome-ter has superior response performance for response over geological targets with slower decay time when compared to the induction coil signals.The SQUID magnetometer is more sensitive at observing the induced-polarization effect which is closely related to the ore-controlling faults. 展开更多
关键词 TEM HTS SQUID magnetometer B-field deep exploration the Baiyun gold deposit
原文传递
Electrical structure identification of deep shale gas reservoir in complex structural area using wide field electromagnetic method 被引量:1
10
作者 Gu Zhi-Wen Li Yue-Gang +6 位作者 Yu Chang-Heng Zou Zhong-Ping Hu Ai-Guo Yin Xue-Bo Wang Qinag Ye Heng Tan Zhang-Kun 《Applied Geophysics》 SCIE CSCD 2024年第3期564-578,619,620,共17页
To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the con... To fully exploit the technical advantages of the large-depth and high-precision artificial source electromagnetic method in the complex structure area of southern Sichuan and compensate for the shortcomings of the conventional electromagnetic method in exploration depth,precision,and accuracy,the large-depth and high-precision wide field electromagnetic method is applied to the complex structure test area of the Luochang syncline and Yuhe nose anticline in the southern Sichuan.The advantages of the wide field electromagnetic method in detecting deep,low-resistivity thin layers are demonstrated.First,on the basis of the analysis of physical property data,a geological–geoelectric model is established in the test area,and the wide field electromagnetic method is numerically simulated to analyze and evaluate the response characteristics of deep thin shale gas layers on wide field electromagnetic curves.Second,a wide field electromagnetic test is conducted in the complex structure area of southern Sichuan.After data processing and inversion imaging,apparent resistivity logging data are used for calibration to develop an apparent resistivity interpretation model suitable for the test area.On the basis of the results,the characteristics of the electrical structure change in the shallow longitudinal formation of 6 km are implemented,and the transverse electrical distribution characteristics of the deep shale gas layer are delineated.In the prediction area near the well,the subsequent data verification shows that the apparent resistivity obtained using the inversion of the wide field electromagnetic method is consistent with the trend of apparent resistivity revealed by logging,which proves that this method can effectively identify the weak response characteristics of deep shale gas formations in complex structural areas.This experiment,it is shown shows that the wide field electromagnetic method with a large depth and high precision can effectively characterize the electrical characteristics of deep,low-resistivity thin layers in complex structural areas,and a new set of low-cost evaluation technologies for shale gas target layers based on the wide field electromagnetic method is explored. 展开更多
关键词 complex tectonic area in southern Sichuan wide field electromagnetic method deep exploration shale gas reservoir electrical structure
在线阅读 下载PDF
Hydrodynamic Links between Shallow and Deep Mineralization Systems and Implications for Deep Mineral Exploration 被引量:11
11
作者 CHI Guoxiang XU Deru +5 位作者 XUE Chunji LI Zenghua Patrick LEDRU DENG Teng WANG Yumeng SONG Hao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第1期1-25,共25页
Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the ri... Deep mineral exploration is increasingly important for finding new mineral resources but there are many uncertainties.Understanding the factors controlling the localization of mineralization at depth can reduce the risk in deep mineral exploration.One of the relatively poorly constrained but important factors is the hydrodynamics of mineralization.This paper reviews the principles of hydrodynamics of mineralization,especially the nature of relationships between mineralization and structures,and their applications to various types of mineralization systems in the context of hydrodynamic linkage between shallow and deep parts of the systems.Three categories of mineralization systems were examined,i.e.,magmatic-hydrothermal systems,structurally controlled hydrothermal systems with uncertain fluid sources,and hydrothermal systems associated with sedimentary basins.The implications for deep mineral exploration,including potentials for new mineral resources at depth,favorable locations for mineralization,as well as uncertainties,are discussed. 展开更多
关键词 HYDRODYNAMICS structural control of mineralization mineral systems shallow and deep mineralization deep mineral exploration
在线阅读 下载PDF
Quantitative Prediction for Deep Mineral Exploration 被引量:9
12
作者 赵鹏大 成秋明 夏庆霖 《Journal of China University of Geosciences》 SCIE CSCD 2008年第4期309-318,共10页
On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit format... On reviewing the characteristics of deep mineral exploration, this article elaborates on the necessity of employing quantitative prediction to reduce uncertainty. This is caused by complexity of mineral deposit formational environments and mineralization systems as increase of exploration depth and incompleteness of geo-information from limited direct observation. The authors wish to share the idea of "seeking difference" principle in addition to the "similar analogy" principle in deep mineral exploration, especially the focus is on the new ores in depth either in an area with discovered shallow mineral deposits or in new areas where there are no sufficient mineral deposit models to be compared. An on-going research project, involving Sn and Cu mineral deposit quantitative prediction in the Gejiu (个旧) area of Yunnan (云南) Province, China, was briefly introduced to demonstrate how the "three-component" (geoanomaly-mineralization diversity-mineral deposit spectrum) theory and non-linear methods series in conjunction with advanced GIS technology, can be applied in multi-scale and multi-task deep mineral prospecting and quantitative mineral resource assessment. 展开更多
关键词 mineral resources quantitative prediction deep mineral exploration second mineral exploration space
在线阅读 下载PDF
Research Progress on the Solder Joint Reliability of Electronics Using in Deep Space Exploration 被引量:3
13
作者 Qilong Guan Chunjin Hang +4 位作者 Shengli Li Dan Yu Ying Ding Xiuli Wang Yanhong Tian 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期16-28,共13页
The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned ab... The spacecraft for deep space exploration missions will face extreme environments,including cryogenic temperature,intense radiation,wide-range temperature variations and even the combination of conditions mentioned above.Harsh environments will lead to solder joints degradation or even failure,resulting in damage to onboard electronics.The research activities on high reliability solder joints using in extreme environments can not only reduce the use of onboard protection devices,but effectively improve the overall reliability of spacecraft,which is of great significance to the aviation industry.In this paper,we review the reliability research on SnPb solder alloys,Sn-based lead-free solder alloys and In-based solder alloys in extreme environments,and try to provide some suggestions for the follow-up studies,which focus on solder joint reliability under extreme environments. 展开更多
关键词 deep space exploration Extreme environments Solder joints MICROSTRUCTURE ELECTRONICS RELIABILITY
在线阅读 下载PDF
China’s Future Missions for Deep Space Exploration and Exoplanet Space Survey by 2030 被引量:4
14
作者 JI Jianghui WANG Su 《空间科学学报》 CAS CSCD 北大核心 2020年第5期729-731,共3页
Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched.Two Mars exploration missions are designed to investigate geological s... Four future missions for deep space exploration and future space-based exoplanet surveys on habitable planets by 2030 are scheduled to be launched.Two Mars exploration missions are designed to investigate geological structure,the material on Martian surface,and retrieve returned samples.The asteroids and main belt comet exploration is expected to explore two objects within 10 years.The small-body mission will aim to land on the asteroid and get samples return to Earth.The basic physical characteristics of the two objects will be obtained through the mission.The exploration of Jupiter system will characterize the environment of Jupiter and the four largest Moons and understand the atmosphere of Jupiter.In addition,we further introduce two space-based exoplanet survey by 2030,Miyin Program and Closeby Habitable Exoplanet Survey(CHES Mission).Miyin program aims to detect habitable exoplanets using interferometry,while CHES mission expects to discover habitable exoplanets orbiting FGK stars within 10 pc through astrometry.The above-mentioned missions are positively to achieve breakthroughs in the field of planetary science. 展开更多
关键词 deep space exploration Exoplanet surveys MARS JUPITER Habitable planets
在线阅读 下载PDF
China’s Lunar and Deep Space Exploration Program for the Next Decade(2020–2030) 被引量:4
15
作者 XU Lin PEI Zhaoyu +1 位作者 ZOU Yongliao WANG Chi 《空间科学学报》 CAS CSCD 北大核心 2020年第5期615-617,共3页
China has carried out four unmanned missions to the Moon since it launched Chang’E-1,the first lunar orbiter in 2007.With the implementation of the Chang’E-5 mission this year,the three phases of the lunar explorati... China has carried out four unmanned missions to the Moon since it launched Chang’E-1,the first lunar orbiter in 2007.With the implementation of the Chang’E-5 mission this year,the three phases of the lunar exploration program,namely orbiting,landing and returning,have been completed.In the plan of follow-up unmanned lunar exploration missions,it is planned to establish an experimental lunar research station at the lunar south pole by 2030 through the implementation of several missions,laying a foundation for the establishment of practical lunar research station in the future.China successfully launched its first Mars probe on 23 July 2020,followed in future by an asteroid mission,second Mars mission,and a mission to explore Jupiter and its moons. 展开更多
关键词 Lunar exploration deep space exploration Lunar research station Lunar south pole
在线阅读 下载PDF
A Footpad Structure with Reusable Energy Absorption Capability for Deep Space Exploration Lander:Design and Analysis 被引量:1
16
作者 Weiyuan Dou Xiaohang Qiu +2 位作者 Zhiwei Xiong Yanzhao Guo Lele Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期257-270,共14页
The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characte... The footpad structure of a deep space exploration lander is a critical system that makes the initial contact with the ground,and thereby plays a crucial role in determining the stability and energy absorption characteristics during the impact process.The conventional footpad is typically designed with an aluminum honeycomb structure that dissipates energy through plastic deformation.Nevertheless,its effectiveness in providing cushioning and energy absorption becomes significantly compromised when the structure is crushed,rendering it unusable for reusable landers in the future.This study presents a methodology for designing and evaluating structural energy absorption systems incorporating recoverable strain constraints of shape memory alloys(SMA).The topological configuration of the energy absorbing structure is derived using an equivalent static load method(ESL),and three lightweight footpad designs featuring honeycomb-like Ni-Ti shape memory alloys structures and having variable stiffness skins are proposed.To verify the accuracy of the numerical modelling,a honeycomb-like structure subjected to compression load is modeled and then compared with experimental results.Moreover,the influence of the configurations and thickness distribution of the proposed structures on their energy absorption performance is comprehensively evaluated using finite element simulations.The results demonstrate that the proposed design approach effectively regulates the strain threshold to maintain the SMA within the constraint of maximum recoverable strain,resulting in a structural energy absorption capacity of 362 J/kg with a crushing force efficiency greater than 63%. 展开更多
关键词 deep space exploration lander Footpad Shape memory alloy(SMA) Reusable energy absorption structure Design method
在线阅读 下载PDF
Pressure control method and device innovative design for deep oil in-situ exploration and coring 被引量:1
17
作者 Nian-Han Wu Ming-Zhong Gao +5 位作者 Liang-Yu Zhu Jia-Nan Li Dong Fan Bin You Wei Luo Guo-Dong Zhu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1169-1182,共14页
Deep oil exploration coring technology cannot accurately maintain the in-situ pressure and temperature of samples, which leads to a distortion of deep oil and gas resource reserve evaluations based on conventional cor... Deep oil exploration coring technology cannot accurately maintain the in-situ pressure and temperature of samples, which leads to a distortion of deep oil and gas resource reserve evaluations based on conventional cores and cannot guide the development of deep oil and gas resources on Earth. The fundamental reason is the lack of temperature and pressure control in in-situ coring environments. In this paper, a pressure control method of a coring device is studied. The theory and method of deep intelligent temperature-pressure coupling control are innovatively proposed, and a multifield coupling dynamic sealing model is established. The optimal cardinality three term PID (Proportional-Integral-Differential) intelligent control algorithm of pressure system is developed. The temperature-pressure characteristic of the gas-liquid two-phase cavity is analyzed, and the pressure intelligent control is carried out based on three term PID control algorithms. An in-situ condition-preserved coring (ICP-Coring) device is developed, and an intelligent control system for the temperature and pressure of the coring device is designed and verified by experiments. The results show that the temperature-pressure coupling control system can effectively realize stable sealing under temperature-pressure fields of 140 MPa and 150 °C. The temperature-pressure coupling control method can accurately realize a constant pressure inside the coring device. The maximum working pressure is 140 MPa, and the effective pressure compensation range is 20 MPa. The numerical simulation experiment of pressure system control algorithm is carried out, and the optimal cardinality and three term coefficients are obtained. The pressure steady-state error is less than 0.01%. The method of temperature-pressure coupling control has guiding significance for coring device research, and is also the basis for temperature-pressure decoupling control in ICP-Coring. 展开更多
关键词 deep oil exploration Fidelity coring device Temperature-pressure coupling control theory Pressure control algorithm Temperature-pressure field alternating model
原文传递
Application of Transient Electromagnetic Method with Multi-Radiation Field Sources in Deep Edge Mineral Resources Exploration 被引量:2
18
作者 ZENG Youqiang ZENG Gaofu +3 位作者 HUANG Lishan LI Xiu GUO Jianlei WANG Jianchao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期99-101,共3页
In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international... In recent years,in order to meet the practical needs of deep edge mine detection with large depth and high precision,transient electromagnetic method(TEM)near emission source detection mode has become an international advanced method(Xue et al.,2020). 展开更多
关键词 multiple radiation field sources exploration of deep mineral resources transient electromagnetic method
在线阅读 下载PDF
Deep gold mineralization features of Jiaojia metallogenic belt,Jiaodong gold Province:Based on the breakthrough of 3000 m exploration drilling 被引量:2
19
作者 Xue-feng Yu Da-peng Li +7 位作者 Jing-xiang Tian De-ping Yang Wei Shan Ke Geng Yu-xin Xiong Nai-jie Chi Peng-fei Wei Peng-rui Liu 《China Geology》 2020年第3期385-401,共17页
Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus ... Recently,continuous breakthroughs have been made about deep gold prospecting in the Jiaodong gold province area of China.Approximately 5000 t of cumulative gold resources have been explored in Jiaodong,which has thus become an internationally noteworthy gold ore cluster.The gold exploration depth has been increased to about 2000 m from the previous<1000 m.To further explore the mineralization potential of the Jiaodong area at a depth of about 3000 m,the Shandong Institute of Geological Sciences has drilled an exploratory drillhole named“Deep drillhole ZK01”to a depth of 3266 m.Hence,as reported herein,the mineralization characteristics of the Jiaojia metallogenic belt have been successfully documented.ZK01 is,to date,the deepest borehole with an gold intersect in China,and constitutes a significant advance in deep gold prospecting in China.The findings of this study further indicate that the depth interval of 2000 m to 4000 m below the ground surface in the Wuyi Village area incorporates 912 t of inferred gold resources,while the depth interval of 2000 m to 4000 m below the surface across the Jiaodong area possesses about 4000 t of inferred gold resources.The Jiaojia Fault Belt tends to gently dip downward,having dip angles of about 25°and about 20°at vertical depths of 2000 m and 2850 m,respectively.The deep part of the Jiaojia metallogenic belt differs from the shallow and moderately deep parts about fracturing,alteration,mineralization,and tectonic type.The deep zones can generally be categorized from inside outward as cataclastic granite,granitic cataclasite,weakly beresitized granitic cataclasite,beresitized cataclasite,and gouge.These zones exhibit a gradual transitional relation or occur alternately and repeatedly.The mineralization degree of the pyritized cataclastic granite-type ore in the deep part of the Jiaojia metallogenic belt is closely related to the degree of pyrite vein development;that is,the higher the pyrite content,the wider the veins and the higher the gold grade.Compared to the shallow gold ores,the deep-seated gold ores have higher fineness and contain joseite,tetradymite,and native bismuth,suggesting that the deep gold mineralization temperature is higher and that mantle-sourced material may have contributed to this mineralization.ZK01 has also revealed that the deep-seated ore bodies in the Jiaojia metallogenic belt are principally situated above the main fracture plane(gouge)and hosted within the Linglong Granite,contradicting previous findings indicating that the moderately shallow gold ore bodies are usually hosted in the contact zone between the Linglong Granite and Jiaodong Group or meta-gabbro.These new discoveries are particularly significant because they can help correct mineralization prospecting models,determine favorable positions for deep prospecting,and improve metallogenic prediction and resource potential evaluation. 展开更多
关键词 Au deposit Alteration rock type Fracture zone 3000 m scientific drilling deep mineral exploration engineering Jiaojia metallogenic belt Shandong Province China
在线阅读 下载PDF
China Seismic Experimental Site(CSES): Challenges of Deep Earth Exploration and Practice(DEEP) 被引量:1
20
作者 LI Ying LI Li +2 位作者 WANG Long HAN Libo WU Zhongliang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第S01期59-61,共3页
Since May 2018,the planning,construction and functioning of China Seismic Experimental Site(CSES)has attracted much attention in earthquake science(CSES,2020 a,b,c;Wu,2020;Li et al.,2021).Different from traditional ea... Since May 2018,the planning,construction and functioning of China Seismic Experimental Site(CSES)has attracted much attention in earthquake science(CSES,2020 a,b,c;Wu,2020;Li et al.,2021).Different from traditional earthquake prediction experiment projects,such as the Parkfield earthquake prediction experiment(Roeloffs,2000). 展开更多
关键词 deep Earth exploration and Practice community models China Seismic Experimental Site
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部