数据流分类方法研究在开放环境下的模型动态更新,以期从实时到达且不断变化的数据流中检测并适应概念演化,目前多数数据流分类方法通常假设数据流中样本的类别数是固定的,并且样本的标签可以不受限制地获取,这在真实场景下是不现实的。...数据流分类方法研究在开放环境下的模型动态更新,以期从实时到达且不断变化的数据流中检测并适应概念演化,目前多数数据流分类方法通常假设数据流中样本的类别数是固定的,并且样本的标签可以不受限制地获取,这在真实场景下是不现实的。为此,该文提出了一种概念演化数据流主动学习方法(Active Learning Method for Concept Evolution Data Stream,ALM-CEDS)。定义基于样本标准差的基分类器重要性度量,提出基于加权预测概率的样本预测方法,提升分类器的分类性能;提出基于混合标签查询策略的分类器更新方法,使用难区分和代表当前数据分布的样本更新分类器;提出基于微簇q-近邻轮廓系数的新类检测方法,在数据流中快速识别新类。在4个真实数据流与5个合成数据流上的对比实验表明,该概念演化数据流主动学习方法在分类性能上优于已有的6种数据流学习方法。展开更多
文摘数据流分类方法研究在开放环境下的模型动态更新,以期从实时到达且不断变化的数据流中检测并适应概念演化,目前多数数据流分类方法通常假设数据流中样本的类别数是固定的,并且样本的标签可以不受限制地获取,这在真实场景下是不现实的。为此,该文提出了一种概念演化数据流主动学习方法(Active Learning Method for Concept Evolution Data Stream,ALM-CEDS)。定义基于样本标准差的基分类器重要性度量,提出基于加权预测概率的样本预测方法,提升分类器的分类性能;提出基于混合标签查询策略的分类器更新方法,使用难区分和代表当前数据分布的样本更新分类器;提出基于微簇q-近邻轮廓系数的新类检测方法,在数据流中快速识别新类。在4个真实数据流与5个合成数据流上的对比实验表明,该概念演化数据流主动学习方法在分类性能上优于已有的6种数据流学习方法。