In this work we discuss SDSPbMM, an integrated Strategy for Data Stream Processing based on Measurement Metadata, applied to an outpatient monitoring scenario. The measures associated to the attributes of the patient ...In this work we discuss SDSPbMM, an integrated Strategy for Data Stream Processing based on Measurement Metadata, applied to an outpatient monitoring scenario. The measures associated to the attributes of the patient (entity) under monitoring, come from heterogeneous data sources as data streams, together with metadata associated with the formal definition of a measurement and evaluation project. Such metadata supports the patient analysis and monitoring in a more consistent way, facilitating for instance: i) The early detection of problems typical of data such as missing values, outliers, among others;and ii) The risk anticipation by means of on-line classification models adapted to the patient. We also performed a simulation using a prototype developed for outpatient monitoring, in order to analyze empirically processing times and variable scalability, which shed light on the feasibility of applying the prototype to real situations. In addition, we analyze statistically the results of the simulation, in order to detect the components which incorporate more variability to the system.展开更多
With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Alth...With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.展开更多
This paper focuses on the parallel aggregation processing of data streams based on the shared-nothing architecture. A novel granularity-aware parallel aggregating model is proposed. It employs parallel sampling and li...This paper focuses on the parallel aggregation processing of data streams based on the shared-nothing architecture. A novel granularity-aware parallel aggregating model is proposed. It employs parallel sampling and linear regression to describe the characteristics of the data quantity in the query window in order to determine the partition granularity of tuples, and utilizes equal depth histogram to implement partitio ning. This method can avoid data skew and reduce communi cation cost. The experiment results on both synthetic data and actual data prove that the proposed method is efficient, practical and suitable for time-varying data streams processing.展开更多
With the advent of the IoT era, the amount of real-time data that is processed in data centers has increased explosively. As a result, stream mining, extracting useful knowledge from a huge amount of data in real time...With the advent of the IoT era, the amount of real-time data that is processed in data centers has increased explosively. As a result, stream mining, extracting useful knowledge from a huge amount of data in real time, is attracting more and more attention. It is said, however, that real- time stream processing will become more difficult in the near future, because the performance of processing applications continues to increase at a rate of 10% - 15% each year, while the amount of data to be processed is increasing exponentially. In this study, we focused on identifying a promising stream mining algorithm, specifically a Frequent Itemset Mining (FIsM) algorithm, then we improved its performance using an FPGA. FIsM algorithms are important and are basic data- mining techniques used to discover association rules from transactional databases. We improved on an approximate FIsM algorithm proposed recently so that it would fit onto hardware architecture efficiently. We then ran experiments on an FPGA. As a result, we have been able to achieve a speed 400% faster than the original algorithm implemented on a CPU. Moreover, our FPGA prototype showed a 20 times speed improvement compared to the CPU version.展开更多
文摘In this work we discuss SDSPbMM, an integrated Strategy for Data Stream Processing based on Measurement Metadata, applied to an outpatient monitoring scenario. The measures associated to the attributes of the patient (entity) under monitoring, come from heterogeneous data sources as data streams, together with metadata associated with the formal definition of a measurement and evaluation project. Such metadata supports the patient analysis and monitoring in a more consistent way, facilitating for instance: i) The early detection of problems typical of data such as missing values, outliers, among others;and ii) The risk anticipation by means of on-line classification models adapted to the patient. We also performed a simulation using a prototype developed for outpatient monitoring, in order to analyze empirically processing times and variable scalability, which shed light on the feasibility of applying the prototype to real situations. In addition, we analyze statistically the results of the simulation, in order to detect the components which incorporate more variability to the system.
基金funded by the Joint Project of Industry-University-Research of Jiangsu Province(Grant:BY20231146).
文摘With the widespread application of Internet of Things(IoT)technology,the processing of massive realtime streaming data poses significant challenges to the computational and data-processing capabilities of systems.Although distributed streaming data processing frameworks such asApache Flink andApache Spark Streaming provide solutions,meeting stringent response time requirements while ensuring high throughput and resource utilization remains an urgent problem.To address this,the study proposes a formal modeling approach based on Performance Evaluation Process Algebra(PEPA),which abstracts the core components and interactions of cloud-based distributed streaming data processing systems.Additionally,a generic service flow generation algorithmis introduced,enabling the automatic extraction of service flows fromthe PEPAmodel and the computation of key performance metrics,including response time,throughput,and resource utilization.The novelty of this work lies in the integration of PEPA-based formal modeling with the service flow generation algorithm,bridging the gap between formal modeling and practical performance evaluation for IoT systems.Simulation experiments demonstrate that optimizing the execution efficiency of components can significantly improve system performance.For instance,increasing the task execution rate from 10 to 100 improves system performance by 9.53%,while further increasing it to 200 results in a 21.58%improvement.However,diminishing returns are observed when the execution rate reaches 500,with only a 0.42%gain.Similarly,increasing the number of TaskManagers from 10 to 20 improves response time by 18.49%,but the improvement slows to 6.06% when increasing from 20 to 50,highlighting the importance of co-optimizing component efficiency and resource management to achieve substantial performance gains.This study provides a systematic framework for analyzing and optimizing the performance of IoT systems for large-scale real-time streaming data processing.The proposed approach not only identifies performance bottlenecks but also offers insights into improving system efficiency under different configurations and workloads.
基金Supported by Foundation of High Technology Pro-ject of Jiangsu (BG2004034) , Foundation of Graduate Creative Pro-gramof Jiangsu (xm04-36)
文摘This paper focuses on the parallel aggregation processing of data streams based on the shared-nothing architecture. A novel granularity-aware parallel aggregating model is proposed. It employs parallel sampling and linear regression to describe the characteristics of the data quantity in the query window in order to determine the partition granularity of tuples, and utilizes equal depth histogram to implement partitio ning. This method can avoid data skew and reduce communi cation cost. The experiment results on both synthetic data and actual data prove that the proposed method is efficient, practical and suitable for time-varying data streams processing.
文摘With the advent of the IoT era, the amount of real-time data that is processed in data centers has increased explosively. As a result, stream mining, extracting useful knowledge from a huge amount of data in real time, is attracting more and more attention. It is said, however, that real- time stream processing will become more difficult in the near future, because the performance of processing applications continues to increase at a rate of 10% - 15% each year, while the amount of data to be processed is increasing exponentially. In this study, we focused on identifying a promising stream mining algorithm, specifically a Frequent Itemset Mining (FIsM) algorithm, then we improved its performance using an FPGA. FIsM algorithms are important and are basic data- mining techniques used to discover association rules from transactional databases. We improved on an approximate FIsM algorithm proposed recently so that it would fit onto hardware architecture efficiently. We then ran experiments on an FPGA. As a result, we have been able to achieve a speed 400% faster than the original algorithm implemented on a CPU. Moreover, our FPGA prototype showed a 20 times speed improvement compared to the CPU version.