Many multi-story or highrise buildings consisting of a number of identical stories are usually considered as periodic spring-mass systems. The general expressions of natural frequencies, mode shapes, slopes and curvat...Many multi-story or highrise buildings consisting of a number of identical stories are usually considered as periodic spring-mass systems. The general expressions of natural frequencies, mode shapes, slopes and curvatures of mode shapes of the periodic spring-mass system by utilizing the periodic structure theory are derived in this paper. The sensitivities of these mode parameters with respect to structural damages, which do not depend on the physical parameters of the original structures, are obtained. Based on the sensitivity analysis of these mode parameters, a two-stage method is proposed to localize and quantify damages of multi-story or highrise buildings. The slopes and curvatures of mode shapes, which are highly sensitive to local damages, are used to localize the damages. Subsequently, the limited measured natural frequencies, which have a better accuracy than the other mode parameters, are used to quantify the extent of damages within the potential damaged locations. The experimental results of a 3-story experimental building demonstrate that the single or multiple damages of buildings, either slight or severe, can be correctly localized by using only the slope or curvature of mode shape in one of the lower modes, in which the change of natural frequency is the largest, and can be accurately quantified by the limited measured natural frequencies with noise pollution.展开更多
市场营销领域对数据的研究正在逐渐地从传统的单模态数据向信息更加丰富的多模态数据过渡,回顾和展望市场营销研究经历的多模态数据形塑过程具有学术价值和实践意义。笔者基于Web of Science与中国知网数据库资源(2005—2025),运用CiteS...市场营销领域对数据的研究正在逐渐地从传统的单模态数据向信息更加丰富的多模态数据过渡,回顾和展望市场营销研究经历的多模态数据形塑过程具有学术价值和实践意义。笔者基于Web of Science与中国知网数据库资源(2005—2025),运用CiteSpace和内容分析两种研究工具,从研究主题、理论基础及研究方法等维度,对筛选自核心期刊的407篇相关研究样本文献进行了系统梳理和深度解构,呈现出多模态数据对市场营销研究的形塑:研究主题的演进主轴为“静态内容呈现”—“动态互动参与”—“长期价值转化”;理论基础展现由市场营销学扩展到信息科学、传播学、心理学等多学科的相互交叉融合;研究方法趋向以人工智能计算为主导,辅之定性阐释的多元化格局;基于样本文献研究构建的多模态数据形塑市场营销研究的整合性理论框架,系统揭示多模态信息影响力的完整作用机制;涵盖理论深化、方法创新、应用拓展等一系列拓展预景均可宏观勾勒。研究结论为该领域的理论深化与实践创新提供了整合性的认知框架与前瞻性指引。展开更多
该研究通过文献计量分析,探讨人工智能在阿尔茨海默病研究中的发展趋势和应用热点。基于Web of Science核心数据库,检索了2013—2023年间的3 680篇相关文献,利用CiteSpace软件进行共现分析与关键词聚类,分析了发文趋势、国家和机构的合...该研究通过文献计量分析,探讨人工智能在阿尔茨海默病研究中的发展趋势和应用热点。基于Web of Science核心数据库,检索了2013—2023年间的3 680篇相关文献,利用CiteSpace软件进行共现分析与关键词聚类,分析了发文趋势、国家和机构的合作情况、核心作者及共被引文献等。研究结果表明,人工智能在阿尔茨海默病领域的应用主要集中在影像数据分析与早期诊断、多模态数据融合以及脑网络功能连接三个方向。同时,任务分析和迁移学习作为新兴热点,显示了人工智能在个体化诊断和长期病情管理中的潜力。从结果分析可知,人工智能在阿尔茨海默病诊断与治疗中的应用正处于快速发展阶段,未来研究将聚焦于算法的泛化能力提升和多模态数据处理能力,以提供更加精准的诊断和个体化治疗方案。展开更多
近年来,大语言模型(LLM)在自然语言处理、计算机视觉等领域都展示出卓越的语言理解和对话能力。然而,它们常常会在专业领域中产生与正确答案不相符的推理结果。这为LLM在精确和准确的决策任务中的应用带来了重大挑战。为了解决这个问题...近年来,大语言模型(LLM)在自然语言处理、计算机视觉等领域都展示出卓越的语言理解和对话能力。然而,它们常常会在专业领域中产生与正确答案不相符的推理结果。这为LLM在精确和准确的决策任务中的应用带来了重大挑战。为了解决这个问题,提出一种规则指导的后提示词大模型(PP-LLM)生成方法。该方法通过生成后提示词可以将原问题转化为2个更容易解决的子问题,从而引入专家知识、降低任务学习难度。具体来说,使用知识指导的特定规则将监督数据集的输出部分转化为后提示词与输出部分的组合。PP-LLM方法不改变模型的训练和推理过程,并且不增加计算量。实验结果表明,PP-LLM方法显著提高了推理结果的准确性,缩小了模型预测与实际答案之间的差距,与不使用所提方法的结果相比,F1值、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)等都有显著提高。可见,以上工作提高了LLM在专业应用上的可靠性,并为LLM生成技术提供了新的思路。展开更多
基金Project supported by the National Natural Science Foundation of China (No. 50378041) Specialized Research Fund for Doctoral Programs of Higher Education (No. 20030487016).
文摘Many multi-story or highrise buildings consisting of a number of identical stories are usually considered as periodic spring-mass systems. The general expressions of natural frequencies, mode shapes, slopes and curvatures of mode shapes of the periodic spring-mass system by utilizing the periodic structure theory are derived in this paper. The sensitivities of these mode parameters with respect to structural damages, which do not depend on the physical parameters of the original structures, are obtained. Based on the sensitivity analysis of these mode parameters, a two-stage method is proposed to localize and quantify damages of multi-story or highrise buildings. The slopes and curvatures of mode shapes, which are highly sensitive to local damages, are used to localize the damages. Subsequently, the limited measured natural frequencies, which have a better accuracy than the other mode parameters, are used to quantify the extent of damages within the potential damaged locations. The experimental results of a 3-story experimental building demonstrate that the single or multiple damages of buildings, either slight or severe, can be correctly localized by using only the slope or curvature of mode shape in one of the lower modes, in which the change of natural frequency is the largest, and can be accurately quantified by the limited measured natural frequencies with noise pollution.
文摘市场营销领域对数据的研究正在逐渐地从传统的单模态数据向信息更加丰富的多模态数据过渡,回顾和展望市场营销研究经历的多模态数据形塑过程具有学术价值和实践意义。笔者基于Web of Science与中国知网数据库资源(2005—2025),运用CiteSpace和内容分析两种研究工具,从研究主题、理论基础及研究方法等维度,对筛选自核心期刊的407篇相关研究样本文献进行了系统梳理和深度解构,呈现出多模态数据对市场营销研究的形塑:研究主题的演进主轴为“静态内容呈现”—“动态互动参与”—“长期价值转化”;理论基础展现由市场营销学扩展到信息科学、传播学、心理学等多学科的相互交叉融合;研究方法趋向以人工智能计算为主导,辅之定性阐释的多元化格局;基于样本文献研究构建的多模态数据形塑市场营销研究的整合性理论框架,系统揭示多模态信息影响力的完整作用机制;涵盖理论深化、方法创新、应用拓展等一系列拓展预景均可宏观勾勒。研究结论为该领域的理论深化与实践创新提供了整合性的认知框架与前瞻性指引。
文摘该研究通过文献计量分析,探讨人工智能在阿尔茨海默病研究中的发展趋势和应用热点。基于Web of Science核心数据库,检索了2013—2023年间的3 680篇相关文献,利用CiteSpace软件进行共现分析与关键词聚类,分析了发文趋势、国家和机构的合作情况、核心作者及共被引文献等。研究结果表明,人工智能在阿尔茨海默病领域的应用主要集中在影像数据分析与早期诊断、多模态数据融合以及脑网络功能连接三个方向。同时,任务分析和迁移学习作为新兴热点,显示了人工智能在个体化诊断和长期病情管理中的潜力。从结果分析可知,人工智能在阿尔茨海默病诊断与治疗中的应用正处于快速发展阶段,未来研究将聚焦于算法的泛化能力提升和多模态数据处理能力,以提供更加精准的诊断和个体化治疗方案。
文摘近年来,大语言模型(LLM)在自然语言处理、计算机视觉等领域都展示出卓越的语言理解和对话能力。然而,它们常常会在专业领域中产生与正确答案不相符的推理结果。这为LLM在精确和准确的决策任务中的应用带来了重大挑战。为了解决这个问题,提出一种规则指导的后提示词大模型(PP-LLM)生成方法。该方法通过生成后提示词可以将原问题转化为2个更容易解决的子问题,从而引入专家知识、降低任务学习难度。具体来说,使用知识指导的特定规则将监督数据集的输出部分转化为后提示词与输出部分的组合。PP-LLM方法不改变模型的训练和推理过程,并且不增加计算量。实验结果表明,PP-LLM方法显著提高了推理结果的准确性,缩小了模型预测与实际答案之间的差距,与不使用所提方法的结果相比,F1值、ROUGE(Recall-Oriented Understudy for Gisting Evaluation)等都有显著提高。可见,以上工作提高了LLM在专业应用上的可靠性,并为LLM生成技术提供了新的思路。