期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Detection of Knowledge on Social Media Using Data Mining Techniques
1
作者 Aseel Abdullah Alolayan Ahmad A. Alhamed 《Open Journal of Applied Sciences》 2024年第2期472-482,共11页
In light of the rapid growth and development of social media, it has become the focus of interest in many different scientific fields. They seek to extract useful information from it, and this is called (knowledge), s... In light of the rapid growth and development of social media, it has become the focus of interest in many different scientific fields. They seek to extract useful information from it, and this is called (knowledge), such as extracting information related to people’s behaviors and interactions to analyze feelings or understand the behavior of users or groups, and many others. This extracted knowledge has a very important role in decision-making, creating and improving marketing objectives and competitive advantage, monitoring events, whether political or economic, and development in all fields. Therefore, to extract this knowledge, we need to analyze the vast amount of data found within social media using the most popular data mining techniques and applications related to social media sites. 展开更多
关键词 data mining KNOWLEDGE data mining techniques Social Media
在线阅读 下载PDF
Linking Competitors’ Knowledge and Developing Innovative Products Using Data Mining Techniques
2
作者 Nasimalsadat Saesi Mohammad Taleghani 《Journal of Computer and Communications》 2023年第7期37-57,共21页
In this article, the relationship between the knowledge of competitors and the development of new products in the field of capital medical equipment has been investigated. In order to identify the criteria for measuri... In this article, the relationship between the knowledge of competitors and the development of new products in the field of capital medical equipment has been investigated. In order to identify the criteria for measuring competitors’ knowledge and developing new capital medical equipment products, marketing experts were interviewed and then a researcher-made questionnaire was compiled and distributed among the statistical sample of the research. Also, in order to achieve the goals of the research, a questionnaire among 100 members of the statistical community was selected, distributed and collected. To analyze the gathered data, the structural equation modeling (SEM) method was used in the SMART PLS 2 software to estimate the model and then the K-MEAN approach was used to cluster the capital medical equipment market based on the knowledge of actual and potential competitors. The results have shown that the knowledge of potential and actual competitors has a positive and significant effect on the development of new products in the capital medical equipment market. From the point of view of the knowledge of actual competitors, the market of “MRI”, “Ultrasound” and “SPECT” is grouped in the low knowledge cluster;“Pet MRI”, “CT Scan”, “Mammography”, “Radiography, Fluoroscopy and CRM”, “Pet CT”, “SPECT CT” and “Gamma Camera” markets are clustered in the medium knowledge. Finally, “Angiography” and “CBCT” markets are located in the knowledge cluster. From the perspective of knowledge of potential competitors, the market of “angiography”, “mammography”, “SPECT” and “SPECT CT” in the low knowledge cluster, “CT scan”, “radiography, fluoroscopy and CRM”, “pet CT”, “CBCT” markets in the medium knowledge cluster and “MRI”, “pet MRI”, “ultrasound” and “gamma camera” markets in the high knowledge cluster are located. 展开更多
关键词 Knowledge of Competitors Development of Products Innovative Products data mining data mining techniques Medical Capital Goods Medical Capital Goods Market
暂未订购
Multi-disciplinary Conceptual Design Knowledge of Multi-stage Hybrid Rocket Using Data Mining Technique
3
作者 Masahiro Kanazaki Kazuhisa Chiba +2 位作者 Koki Kitagawa Toru Shimada Masashi Nakamiya 《Journal of Mechanics Engineering and Automation》 2015年第1期1-9,共9页
This paper deals with the application of data mining techniques to the conceptual design knowledge for a LV (launch vehicle) with a HRE (hybrid rocket engine). This LV is a concept of the space transportation, whi... This paper deals with the application of data mining techniques to the conceptual design knowledge for a LV (launch vehicle) with a HRE (hybrid rocket engine). This LV is a concept of the space transportation, which can deliver micro-satellite to the SSO (sun-synchronous orbit). To design the higher performance LV with HRE, the optimum size of each component, such as an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle, should be acquired. The Kriging based ANOVA (analysis of variance) and SOM (self-organizing map) are employed as data mining techniques for knowledge discovery. In this study, the paraffin (FT-0070) is used as a propellant of HRE. Then, the relationship among LV performances and design variables are investigated through the analysis and the visualization. To calculate the engine performance, the regression rate is computed based on an empirical expression. The design knowledge is extracted for the design knowledge of the multi-stage LV with HRE by analysis using ANOVA and SOM. As a result, the useful design knowledge on the present design problem is obtained to design HRE for space transportation. 展开更多
关键词 Hybrid rocket data mining techniques multidisciplinary design
在线阅读 下载PDF
Oilfield analogy and productivity prediction based on machine learning: Field cases in PL oilfield, China
4
作者 Wen-Peng Bai Shi-Qing Cheng +3 位作者 Xin-Yang Guo Yang Wang Qiao Guo Chao-Dong Tan 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2554-2570,共17页
In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this... In the early time of oilfield development, insufficient production data and unclear understanding of oil production presented a challenge to reservoir engineers in devising effective development plans. To address this challenge, this study proposes a method using data mining technology to search for similar oil fields and predict well productivity. A query system of 135 analogy parameters is established based on geological and reservoir engineering research, and the weight values of these parameters are calculated using a data algorithm to establish an analogy system. The fuzzy matter-element algorithm is then used to calculate the similarity between oil fields, with fields having similarity greater than 70% identified as similar oil fields. Using similar oil fields as sample data, 8 important factors affecting well productivity are identified using the Pearson coefficient and mean decrease impurity(MDI) method. To establish productivity prediction models, linear regression(LR), random forest regression(RF), support vector regression(SVR), backpropagation(BP), extreme gradient boosting(XGBoost), and light gradient boosting machine(Light GBM) algorithms are used. Their performance is evaluated using the coefficient of determination(R^(2)), explained variance score(EV), mean squared error(MSE), and mean absolute error(MAE) metrics. The Light GBM model is selected to predict the productivity of 30 wells in the PL field with an average error of only 6.31%, which significantly improves the accuracy of the productivity prediction and meets the application requirements in the field. Finally, a software platform integrating data query,oil field analogy, productivity prediction, and knowledge base is established to identify patterns in massive reservoir development data and provide valuable technical references for new reservoir development. 展开更多
关键词 data mining technique Analogy parameters Oilfield analogy Productivity prediction Software platform
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部