With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp...With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.展开更多
Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication w...Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security.展开更多
基金supported by the Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Korea government(MSIT)(No.RS-2023-00235509Development of security monitoring technology based network behavior against encrypted cyber threats in ICT convergence environment).
文摘With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy.
基金This research work was funded by Institution Fund projects under Grant No.(IFPRC-215-249-2020)Therefore,authors gratefully acknowledge technical and financial support from the Ministry of Education and King Abdulaziz University,DSR,Jeddah,Saudi Arabia.
文摘Rapid advancements of the Industrial Internet of Things(IIoT)and artificial intelligence(AI)pose serious security issues by revealing secret data.Therefore,security data becomes a crucial issue in IIoT communication where secrecy needs to be guaranteed in real time.Practically,AI techniques can be utilized to design image steganographic techniques in IIoT.In addition,encryption techniques act as an important role to save the actual information generated from the IIoT devices to avoid unauthorized access.In order to accomplish secure data transmission in IIoT environment,this study presents novel encryption with image steganography based data hiding technique(EISDHT)for IIoT environment.The proposed EIS-DHT technique involves a new quantum black widow optimization(QBWO)to competently choose the pixel values for hiding secrete data in the cover image.In addition,the multi-level discrete wavelet transform(DWT)based transformation process takes place.Besides,the secret image is divided into three R,G,and B bands which are then individually encrypted using Blowfish,Twofish,and Lorenz Hyperchaotic System.At last,the stego image gets generated by placing the encrypted images into the optimum pixel locations of the cover image.In order to validate the enhanced data hiding performance of the EIS-DHT technique,a set of simulation analyses take place and the results are inspected interms of different measures.The experimental outcomes stated the supremacy of the EIS-DHT technique over the other existing techniques and ensure maximum security.