期刊文献+
共找到358,954篇文章
< 1 2 250 >
每页显示 20 50 100
A Convolutional Neural Network-Based Deep Support Vector Machine for Parkinson’s Disease Detection with Small-Scale and Imbalanced Datasets
1
作者 Kwok Tai Chui Varsha Arya +2 位作者 Brij B.Gupta Miguel Torres-Ruiz Razaz Waheeb Attar 《Computers, Materials & Continua》 2026年第1期1410-1432,共23页
Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using d... Parkinson’s disease(PD)is a debilitating neurological disorder affecting over 10 million people worldwide.PD classification models using voice signals as input are common in the literature.It is believed that using deep learning algorithms further enhances performance;nevertheless,it is challenging due to the nature of small-scale and imbalanced PD datasets.This paper proposed a convolutional neural network-based deep support vector machine(CNN-DSVM)to automate the feature extraction process using CNN and extend the conventional SVM to a DSVM for better classification performance in small-scale PD datasets.A customized kernel function reduces the impact of biased classification towards the majority class(healthy candidates in our consideration).An improved generative adversarial network(IGAN)was designed to generate additional training data to enhance the model’s performance.For performance evaluation,the proposed algorithm achieves a sensitivity of 97.6%and a specificity of 97.3%.The performance comparison is evaluated from five perspectives,including comparisons with different data generation algorithms,feature extraction techniques,kernel functions,and existing works.Results reveal the effectiveness of the IGAN algorithm,which improves the sensitivity and specificity by 4.05%–4.72%and 4.96%–5.86%,respectively;and the effectiveness of the CNN-DSVM algorithm,which improves the sensitivity by 1.24%–57.4%and specificity by 1.04%–163%and reduces biased detection towards the majority class.The ablation experiments confirm the effectiveness of individual components.Two future research directions have also been suggested. 展开更多
关键词 Convolutional neural network data generation deep support vector machine feature extraction generative artificial intelligence imbalanced dataset medical diagnosis Parkinson’s disease small-scale dataset
在线阅读 下载PDF
Graph-Based Unified Settlement Framework for Complex Electricity Markets:Data Integration and Automated Refund Clearing
2
作者 Xiaozhe Guo Suyan Long +4 位作者 Ziyu Yue Yifan Wang Guanting Yin Yuyang Wang Zhaoyuan Wu 《Energy Engineering》 2026年第1期56-90,共35页
The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack... The increasing complexity of China’s electricity market creates substantial challenges for settlement automation,data consistency,and operational scalability.Existing provincial settlement systems are fragmented,lack a unified data structure,and depend heavily on manual intervention to process high-frequency and retroactive transactions.To address these limitations,a graph-based unified settlement framework is proposed to enhance automation,flexibility,and adaptability in electricity market settlements.A flexible attribute-graph model is employed to represent heterogeneousmulti-market data,enabling standardized integration,rapid querying,and seamless adaptation to evolving business requirements.An extensible operator library is designed to support configurable settlement rules,and a suite of modular tools—including dataset generation,formula configuration,billing templates,and task scheduling—facilitates end-to-end automated settlement processing.A robust refund-clearing mechanism is further incorporated,utilizing sandbox execution,data-version snapshots,dynamic lineage tracing,and real-time changecapture technologies to enable rapid and accurate recalculations under dynamic policy and data revisions.Case studies based on real-world data from regional Chinese markets validate the effectiveness of the proposed approach,demonstrating marked improvements in computational efficiency,system robustness,and automation.Moreover,enhanced settlement accuracy and high temporal granularity improve price-signal fidelity,promote cost-reflective tariffs,and incentivize energy-efficient and demand-responsive behavior among market participants.The method not only supports equitable and transparent market operations but also provides a generalizable,scalable foundation for modern electricity settlement platforms in increasingly complex and dynamic market environments. 展开更多
关键词 Electricity market market settlement data model graph database market refund clearing
在线阅读 下载PDF
The Logic and Architecture of Future Data Systems
3
作者 Jinghai Li Li Guo 《Engineering》 2025年第4期14-15,共2页
This article presents views on the future development of data science,with a particular focus on its importance to artificial intel-ligence(AI).After discussing the challenges of data science,it elu-cidates a possible... This article presents views on the future development of data science,with a particular focus on its importance to artificial intel-ligence(AI).After discussing the challenges of data science,it elu-cidates a possible approach to tackle these challenges by clarifying the logic and principles of data related to the multi-level complex-ity of the world.Finally,urgently required actions are briefly outlined. 展开更多
关键词 data sciencewith data science artificial intelligence future data systems data scienceit challenges clarifying logic principles data ARCHITECTURE
在线阅读 下载PDF
National Population Health Data Center
4
《Chinese Medical Sciences Journal》 2025年第1期F0003-F0003,共1页
National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chines... National Population Health Data Center(NPHDC)is one of China's 20 national-level science data centers,jointly designated by the Ministry of Science and Technology and the Ministry of Finance.Operated by the Chinese Academy of Medical Sciences under the oversight of the National Health Commission,NPHDC adheres to national regulations including the Scientific Data Management Measures and the National Science and Technology Infrastructure Service Platform Management Measures,and is committed to collecting,integrating,managing,and sharing biomedical and health data through openaccess platform,fostering open sharing and engaging in international cooperation. 展开更多
关键词 science technology infrastructure population health data open access international cooperation national population health data center scientific data management biomedical data health data
在线阅读 下载PDF
Photoneutron cross‑section data generation and analysis at the Shanghai laser electron gamma source
5
作者 Zi-Rui Hao Long-Xiang Liu +15 位作者 Yue Zhang Hong-Wei Wang Gong-Tao Fan Hang-Hua Xu Sheng Jin Yu-Xuan Yang Zhi-Cai Li Pu Jiao Kai-Jie Chen Qian-Kun Sun Zhen-Wei Wang Meng-Die Zhou Shan Ye Meng-Ke Xu Xiang-Fei Wang Yu-Long Shen 《Nuclear Science and Techniques》 2025年第10期1-12,共12页
Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new las... Photonuclear data are increasingly used in fundamental nuclear research and technological applications.These data are generated using advanced γ-ray sources.The Shanghai laser electron gamma source(SLEGS)is a new laser Compton scattering γ-ray source at the Shanghai Synchrotron Radiation Facility.It delivers energy-tunable,quasi-monoenergetic gamma beams for high-precision photonuclear measurements.This paper presents the flat-efficiency detector(FED)array at SLEGS and its application in photoneutron cross-section measurements.Systematic uncertainties of the FED array were determined to be 3.02%through calibration with a ^(252)Cf neutron source.Using ^(197)Au and ^(159)Tb as representative nuclei,we demonstrate the format and processing methodology for raw photoneutron data.The results validate SLEGS’capability for high-precision photoneutron measurements. 展开更多
关键词 data descriptor Raw data data repositories data sharing data reuse
在线阅读 下载PDF
Diversity,Complexity,and Challenges of Viral Infectious Disease Data in the Big Data Era:A Comprehensive Review 被引量:1
6
作者 Yun Ma Lu-Yao Qin +1 位作者 Xiao Ding Ai-Ping Wu 《Chinese Medical Sciences Journal》 2025年第1期29-44,I0005,共17页
Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning fr... Viral infectious diseases,characterized by their intricate nature and wide-ranging diversity,pose substantial challenges in the domain of data management.The vast volume of data generated by these diseases,spanning from the molecular mechanisms within cells to large-scale epidemiological patterns,has surpassed the capabilities of traditional analytical methods.In the era of artificial intelligence(AI)and big data,there is an urgent necessity for the optimization of these analytical methods to more effectively handle and utilize the information.Despite the rapid accumulation of data associated with viral infections,the lack of a comprehensive framework for integrating,selecting,and analyzing these datasets has left numerous researchers uncertain about which data to select,how to access it,and how to utilize it most effectively in their research.This review endeavors to fill these gaps by exploring the multifaceted nature of viral infectious diseases and summarizing relevant data across multiple levels,from the molecular details of pathogens to broad epidemiological trends.The scope extends from the micro-scale to the macro-scale,encompassing pathogens,hosts,and vectors.In addition to data summarization,this review thoroughly investigates various dataset sources.It also traces the historical evolution of data collection in the field of viral infectious diseases,highlighting the progress achieved over time.Simultaneously,it evaluates the current limitations that impede data utilization.Furthermore,we propose strategies to surmount these challenges,focusing on the development and application of advanced computational techniques,AI-driven models,and enhanced data integration practices.By providing a comprehensive synthesis of existing knowledge,this review is designed to guide future research and contribute to more informed approaches in the surveillance,prevention,and control of viral infectious diseases,particularly within the context of the expanding big-data landscape. 展开更多
关键词 viral infectious diseases big data data diversity and complexity data standardization artificial intelligence data analysis
暂未订购
Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization
7
作者 Amjad Rehman Tanzila Saba +2 位作者 Mona M.Jamjoom Shaha Al-Otaibi Muhammad I.Khan 《Computers, Materials & Continua》 2026年第1期1804-1818,共15页
Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness a... Modern intrusion detection systems(MIDS)face persistent challenges in coping with the rapid evolution of cyber threats,high-volume network traffic,and imbalanced datasets.Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively.This study introduces an advanced,explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets,which reflects real-world network behavior through a blend of normal and diverse attack classes.The methodology begins with sophisticated data preprocessing,incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions,ensuring standardized and model-ready inputs.Critical dimensionality reduction is achieved via the Harris Hawks Optimization(HHO)algorithm—a nature-inspired metaheuristic modeled on hawks’hunting strategies.HHO efficiently identifies the most informative features by optimizing a fitness function based on classification performance.Following feature selection,the SMOTE is applied to the training data to resolve class imbalance by synthetically augmenting underrepresented attack types.The stacked architecture is then employed,combining the strengths of XGBoost,SVM,and RF as base learners.This layered approach improves prediction robustness and generalization by balancing bias and variance across diverse classifiers.The model was evaluated using standard classification metrics:precision,recall,F1-score,and overall accuracy.The best overall performance was recorded with an accuracy of 99.44%for UNSW-NB15,demonstrating the model’s effectiveness.After balancing,the model demonstrated a clear improvement in detecting the attacks.We tested the model on four datasets to show the effectiveness of the proposed approach and performed the ablation study to check the effect of each parameter.Also,the proposed model is computationaly efficient.To support transparency and trust in decision-making,explainable AI(XAI)techniques are incorporated that provides both global and local insight into feature contributions,and offers intuitive visualizations for individual predictions.This makes it suitable for practical deployment in cybersecurity environments that demand both precision and accountability. 展开更多
关键词 Intrusion detection XAI machine learning ensemble method CYBERSECURITY imbalance data
在线阅读 下载PDF
A Composite Loss-Based Autoencoder for Accurate and Scalable Missing Data Imputation
8
作者 Thierry Mugenzi Cahit Perkgoz 《Computers, Materials & Continua》 2026年第1期1985-2005,共21页
Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel a... Missing data presents a crucial challenge in data analysis,especially in high-dimensional datasets,where missing data often leads to biased conclusions and degraded model performance.In this study,we present a novel autoencoder-based imputation framework that integrates a composite loss function to enhance robustness and precision.The proposed loss combines(i)a guided,masked mean squared error focusing on missing entries;(ii)a noise-aware regularization term to improve resilience against data corruption;and(iii)a variance penalty to encourage expressive yet stable reconstructions.We evaluate the proposed model across four missingness mechanisms,such as Missing Completely at Random,Missing at Random,Missing Not at Random,and Missing Not at Random with quantile censorship,under systematically varied feature counts,sample sizes,and missingness ratios ranging from 5%to 60%.Four publicly available real-world datasets(Stroke Prediction,Pima Indians Diabetes,Cardiovascular Disease,and Framingham Heart Study)were used,and the obtained results show that our proposed model consistently outperforms baseline methods,including traditional and deep learning-based techniques.An ablation study reveals the additive value of each component in the loss function.Additionally,we assessed the downstream utility of imputed data through classification tasks,where datasets imputed by the proposed method yielded the highest receiver operating characteristic area under the curve scores across all scenarios.The model demonstrates strong scalability and robustness,improving performance with larger datasets and higher feature counts.These results underscore the capacity of the proposed method to produce not only numerically accurate but also semantically useful imputations,making it a promising solution for robust data recovery in clinical applications. 展开更多
关键词 Missing data imputation autoencoder deep learning missing mechanisms
在线阅读 下载PDF
Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments
9
作者 Yeasul Kim Chaeeun Won Hwankuk Kim 《Computers, Materials & Continua》 2026年第1期247-274,共28页
With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comp... With the increasing emphasis on personal information protection,encryption through security protocols has emerged as a critical requirement in data transmission and reception processes.Nevertheless,IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices,spanning a range of devices from non-encrypted ones to fully encrypted ones.Given the limited visibility into payloads in this context,this study investigates AI-based attack detection methods that leverage encrypted traffic metadata,eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices.Using the UNSW-NB15 and CICIoT-2023 dataset,encrypted and unencrypted traffic were categorized according to security protocol,and AI-based intrusion detection experiments were conducted for each traffic type based on metadata.To mitigate the problem of class imbalance,eight different data sampling techniques were applied.The effectiveness of these sampling techniques was then comparatively analyzed using two ensemble models and three Deep Learning(DL)models from various perspectives.The experimental results confirmed that metadata-based attack detection is feasible using only encrypted traffic.In the UNSW-NB15 dataset,the f1-score of encrypted traffic was approximately 0.98,which is 4.3%higher than that of unencrypted traffic(approximately 0.94).In addition,analysis of the encrypted traffic in the CICIoT-2023 dataset using the same method showed a significantly lower f1-score of roughly 0.43,indicating that the quality of the dataset and the preprocessing approach have a substantial impact on detection performance.Furthermore,when data sampling techniques were applied to encrypted traffic,the recall in the UNSWNB15(Encrypted)dataset improved by up to 23.0%,and in the CICIoT-2023(Encrypted)dataset by 20.26%,showing a similar level of improvement.Notably,in CICIoT-2023,f1-score and Receiver Operation Characteristic-Area Under the Curve(ROC-AUC)increased by 59.0%and 55.94%,respectively.These results suggest that data sampling can have a positive effect even in encrypted environments.However,the extent of the improvement may vary depending on data quality,model architecture,and sampling strategy. 展开更多
关键词 Encrypted traffic attack detection data sampling technique AI-based detection IoT environment
在线阅读 下载PDF
Enhanced Capacity Reversible Data Hiding Based on Pixel Value Ordering in Triple Stego Images
10
作者 Kim Sao Nguyen Ngoc Dung Bui 《Computers, Materials & Continua》 2026年第1期1571-1586,共16页
Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi... Reversible data hiding(RDH)enables secret data embedding while preserving complete cover image recovery,making it crucial for applications requiring image integrity.The pixel value ordering(PVO)technique used in multi-stego images provides good image quality but often results in low embedding capability.To address these challenges,this paper proposes a high-capacity RDH scheme based on PVO that generates three stego images from a single cover image.The cover image is partitioned into non-overlapping blocks with pixels sorted in ascending order.Four secret bits are embedded into each block’s maximum pixel value,while three additional bits are embedded into the second-largest value when the pixel difference exceeds a predefined threshold.A similar embedding strategy is also applied to the minimum side of the block,including the second-smallest pixel value.This design enables each block to embed up to 14 bits of secret data.Experimental results demonstrate that the proposed method achieves significantly higher embedding capacity and improved visual quality compared to existing triple-stego RDH approaches,advancing the field of reversible steganography. 展开更多
关键词 RDH reversible data hiding PVO RDH base three stego images
在线阅读 下载PDF
Individual Software Expertise Formalization and Assessment from Project Management Tool Databases
11
作者 Traian-Radu Plosca Alexandru-Mihai Pescaru +1 位作者 Bianca-Valeria Rus Daniel-Ioan Curiac 《Computers, Materials & Continua》 2026年第1期389-411,共23页
Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods... Objective expertise evaluation of individuals,as a prerequisite stage for team formation,has been a long-term desideratum in large software development companies.With the rapid advancements in machine learning methods,based on reliable existing data stored in project management tools’datasets,automating this evaluation process becomes a natural step forward.In this context,our approach focuses on quantifying software developer expertise by using metadata from the task-tracking systems.For this,we mathematically formalize two categories of expertise:technology-specific expertise,which denotes the skills required for a particular technology,and general expertise,which encapsulates overall knowledge in the software industry.Afterward,we automatically classify the zones of expertise associated with each task a developer has worked on using Bidirectional Encoder Representations from Transformers(BERT)-like transformers to handle the unique characteristics of project tool datasets effectively.Finally,our method evaluates the proficiency of each software specialist across already completed projects from both technology-specific and general perspectives.The method was experimentally validated,yielding promising results. 展开更多
关键词 Expertise formalization transformer-based models natural language processing augmented data project management tool skill classification
在线阅读 下载PDF
Efficient Arabic Essay Scoring with Hybrid Models: Feature Selection, Data Optimization, and Performance Trade-Offs
12
作者 Mohamed Ezz Meshrif Alruily +4 位作者 Ayman Mohamed Mostafa Alaa SAlaerjan Bader Aldughayfiq Hisham Allahem Abdulaziz Shehab 《Computers, Materials & Continua》 2026年第1期2274-2301,共28页
Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic... Automated essay scoring(AES)systems have gained significant importance in educational settings,offering a scalable,efficient,and objective method for evaluating student essays.However,developing AES systems for Arabic poses distinct challenges due to the language’s complex morphology,diglossia,and the scarcity of annotated datasets.This paper presents a hybrid approach to Arabic AES by combining text-based,vector-based,and embeddingbased similarity measures to improve essay scoring accuracy while minimizing the training data required.Using a large Arabic essay dataset categorized into thematic groups,the study conducted four experiments to evaluate the impact of feature selection,data size,and model performance.Experiment 1 established a baseline using a non-machine learning approach,selecting top-N correlated features to predict essay scores.The subsequent experiments employed 5-fold cross-validation.Experiment 2 showed that combining embedding-based,text-based,and vector-based features in a Random Forest(RF)model achieved an R2 of 88.92%and an accuracy of 83.3%within a 0.5-point tolerance.Experiment 3 further refined the feature selection process,demonstrating that 19 correlated features yielded optimal results,improving R2 to 88.95%.In Experiment 4,an optimal data efficiency training approach was introduced,where training data portions increased from 5%to 50%.The study found that using just 10%of the data achieved near-peak performance,with an R2 of 85.49%,emphasizing an effective trade-off between performance and computational costs.These findings highlight the potential of the hybrid approach for developing scalable Arabic AES systems,especially in low-resource environments,addressing linguistic challenges while ensuring efficient data usage. 展开更多
关键词 Automated essay scoring text-based features vector-based features embedding-based features feature selection optimal data efficiency
在线阅读 下载PDF
Harnessing deep learning for the discovery of latent patterns in multi-omics medical data
13
作者 Okechukwu Paul-Chima Ugwu Fabian COgenyi +8 位作者 Chinyere Nkemjika Anyanwu Melvin Nnaemeka Ugwu Esther Ugo Alum Mariam Basajja Joseph Obiezu Chukwujekwu Ezeonwumelu Daniel Ejim Uti Ibe Michael Usman Chukwuebuka Gabriel Eze Simeon Ikechukwu Egba 《Medical Data Mining》 2026年第1期32-45,共14页
The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities... The rapid growth of biomedical data,particularly multi-omics data including genomes,transcriptomics,proteomics,metabolomics,and epigenomics,medical research and clinical decision-making confront both new opportunities and obstacles.The huge and diversified nature of these datasets cannot always be managed using traditional data analysis methods.As a consequence,deep learning has emerged as a strong tool for analysing numerous omics data due to its ability to handle complex and non-linear relationships.This paper explores the fundamental concepts of deep learning and how they are used in multi-omics medical data mining.We demonstrate how autoencoders,variational autoencoders,multimodal models,attention mechanisms,transformers,and graph neural networks enable pattern analysis and recognition across all omics data.Deep learning has been found to be effective in illness classification,biomarker identification,gene network learning,and therapeutic efficacy prediction.We also consider critical problems like as data quality,model explainability,whether findings can be repeated,and computational power requirements.We now consider future elements of combining omics with clinical and imaging data,explainable AI,federated learning,and real-time diagnostics.Overall,this study emphasises the need of collaborating across disciplines to advance deep learning-based multi-omics research for precision medicine and comprehending complicated disorders. 展开更多
关键词 deep learning multi-omics integration biomedical data mining precision medicine graph neural networks autoencoders and transformers
在线阅读 下载PDF
Multimodal artificial intelligence integrates imaging,endoscopic,and omics data for intelligent decision-making in individualized gastrointestinal tumor treatment
14
作者 Hui Nian Yi-Bin Wu +5 位作者 Yu Bai Zhi-Long Zhang Xiao-Huang Tu Qi-Zhi Liu De-Hua Zhou Qian-Cheng Du 《Artificial Intelligence in Gastroenterology》 2026年第1期1-19,共19页
Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including ... Gastrointestinal tumors require personalized treatment strategies due to their heterogeneity and complexity.Multimodal artificial intelligence(AI)addresses this challenge by integrating diverse data sources-including computed tomography(CT),magnetic resonance imaging(MRI),endoscopic imaging,and genomic profiles-to enable intelligent decision-making for individualized therapy.This approach leverages AI algorithms to fuse imaging,endoscopic,and omics data,facilitating comprehensive characterization of tumor biology,prediction of treatment response,and optimization of therapeutic strategies.By combining CT and MRI for structural assessment,endoscopic data for real-time visual inspection,and genomic information for molecular profiling,multimodal AI enhances the accuracy of patient stratification and treatment personalization.The clinical implementation of this technology demonstrates potential for improving patient outcomes,advancing precision oncology,and supporting individualized care in gastrointestinal cancers.Ultimately,multimodal AI serves as a transformative tool in oncology,bridging data integration with clinical application to effectively tailor therapies. 展开更多
关键词 Multimodal artificial intelligence Gastrointestinal tumors Individualized therapy Intelligent diagnosis Treatment optimization Prognostic prediction data fusion Deep learning Precision medicine
在线阅读 下载PDF
AI-driven integration of multi-omics and multimodal data for precision medicine
15
作者 Heng-Rui Liu 《Medical Data Mining》 2026年第1期1-2,共2页
High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging ... High-throughput transcriptomics has evolved from bulk RNA-seq to single-cell and spatial profiling,yet its clinical translation still depends on effective integration across diverse omics and data modalities.Emerging foundation models and multimodal learning frameworks are enabling scalable and transferable representations of cellular states,while advances in interpretability and real-world data integration are bridging the gap between discovery and clinical application.This paper outlines a concise roadmap for AI-driven,transcriptome-centered multi-omics integration in precision medicine(Figure 1). 展开更多
关键词 high throughput transcriptomics multi omics single cell multimodal learning frameworks foundation models omics data modalitiesemerging ai driven precision medicine
在线阅读 下载PDF
Cosmic Acceleration and the Hubble Tension from Baryon Acoustic Oscillation Data
16
作者 Xuchen Lu Shengqing Gao Yungui Gong 《Chinese Physics Letters》 2026年第1期327-332,共6页
We investigate the null tests of cosmic accelerated expansion by using the baryon acoustic oscillation(BAO)data measured by the dark energy spectroscopic instrument(DESI)and reconstruct the dimensionless Hubble parame... We investigate the null tests of cosmic accelerated expansion by using the baryon acoustic oscillation(BAO)data measured by the dark energy spectroscopic instrument(DESI)and reconstruct the dimensionless Hubble parameter E(z)from the DESI BAO Alcock-Paczynski(AP)data using Gaussian process to perform the null test.We find strong evidence of accelerated expansion from the DESI BAO AP data.By reconstructing the deceleration parameter q(z) from the DESI BAO AP data,we find that accelerated expansion persisted until z■0.7 with a 99.7%confidence level.Additionally,to provide insights into the Hubble tension problem,we propose combining the reconstructed E(z) with D_(H)/r_(d) data to derive a model-independent result r_(d)h=99.8±3.1 Mpc.This result is consistent with measurements from cosmic microwave background(CMB)anisotropies using the ΛCDM model.We also propose a model-independent method for reconstructing the comoving angular diameter distance D_(M)(z) from the distance modulus μ,using SNe Ia data and combining this result with DESI BAO data of D_(M)/r_(d) to constrain the value of r_(d).We find that the value of r_(d),derived from this model-independent method,is smaller than that obtained from CMB measurements,with a significant discrepancy of at least 4.17σ.All the conclusions drawn in this paper are independent of cosmological models and gravitational theories. 展开更多
关键词 baryon acoustic oscillation bao data cosmic accelerated expansion dimensionless hubble parameter reconstructing deceleration parameter null testwe accelerated expansion null tests gaussian process
原文传递
Data Inference:Data Security Threats in the AI Era
17
作者 Zijun Wang Ting Liu +2 位作者 Yang Liu Enrico Zio Xiaohong Guan 《Engineering》 2025年第9期29-33,共5页
1.Introduction Data inference(DInf)is a data security threat in which critical information is inferred from low-sensitivity data.Once regarded as an advanced professional threat limited to intelligence analysts,DInf h... 1.Introduction Data inference(DInf)is a data security threat in which critical information is inferred from low-sensitivity data.Once regarded as an advanced professional threat limited to intelligence analysts,DInf has become a widespread risk in the artificial intelligence(AI)era. 展开更多
关键词 data security threats data security threat artificial intelligence ai era artificial intelligence data inference data inference dinf advanced professional threat
在线阅读 下载PDF
Data Spaces in Medicine and Health:Technologies,Applications,and Challenges
18
作者 Wan-Fei Hu Si-Zhu Wu Qing Qian 《Chinese Medical Sciences Journal》 2025年第1期18-28,I0004,共12页
Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including... Data space,as an innovative data management and sharing model,is emerging in the medical and health sectors.This study expounds on the conceptual connotation of data space and delineates its key technologies,including distributed data storage,standardization and interoperability of data sharing,data security and privacy protection,data analysis and mining,and data space assessment.By analyzing the real-world cases of data spaces within medicine and health,this study compares the similarities and differences across various dimensions such as purpose,architecture,data interoperability,and privacy protection.Meanwhile,data spaces in these fields are challenged by the limited computing resources,the complexities of data integration,and the need for optimized algorithms.Additionally,legal and ethical issues such as unclear data ownership,undefined usage rights,risks associated with privacy protection need to be addressed.The study notes organizational and management difficulties,calling for enhancements in governance framework,data sharing mechanisms,and value assessment systems.In the future,technological innovation,sound regulations,and optimized management will help the development of the medical and health data space.These developments will enable the secure and efficient utilization of data,propelling the medical industry into an era characterized by precision,intelligence,and personalization. 展开更多
关键词 data space medical and health data data sharing privacy protection data security
在线阅读 下载PDF
Research on Classification and Desensitization Strategies of Sensitive Educational Data
19
作者 Chen Chen Caixia Liu 《Journal of Contemporary Educational Research》 2025年第4期141-146,共6页
In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensit... In the era of digital intelligence,data is a key element in promoting social and economic development.Educational data,as a vital component of data,not only supports teaching and learning but also contains much sensitive information.How to effectively categorize and protect sensitive data has become an urgent issue in educational data security.This paper systematically researches and constructs a multi-dimensional classification framework for sensitive educational data,and discusses its security protection strategy from the aspects of identification and desensitization,aiming to provide new ideas for the security management of sensitive educational data and to help the construction of an educational data security ecosystem in the era of digital intelligence. 展开更多
关键词 data security Sensitive data data classification data desensitization
在线阅读 下载PDF
Sign language data quality improvement based on dual information streams
20
作者 CAI Jialiang YUAN Tiantian 《Optoelectronics Letters》 2025年第6期342-347,共6页
Sign language dataset is essential in sign language recognition and translation(SLRT). Current public sign language datasets are small and lack diversity, which does not meet the practical application requirements for... Sign language dataset is essential in sign language recognition and translation(SLRT). Current public sign language datasets are small and lack diversity, which does not meet the practical application requirements for SLRT. However, making a large-scale and diverse sign language dataset is difficult as sign language data on the Internet is scarce. In making a large-scale and diverse sign language dataset, some sign language data qualities are not up to standard. This paper proposes a two information streams transformer(TIST) model to judge whether the quality of sign language data is qualified. To verify that TIST effectively improves sign language recognition(SLR), we make two datasets, the screened dataset and the unscreened dataset. In this experiment, this paper uses visual alignment constraint(VAC) as the baseline model. The experimental results show that the screened dataset can achieve better word error rate(WER) than the unscreened dataset. 展开更多
关键词 sign language dataset data quality improvement two information streams t dual information streams sign language data sign language translation sign language recognition sign language datasets
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部