期刊文献+
共找到9,211篇文章
< 1 2 250 >
每页显示 20 50 100
Construction and validation of a machine learning algorithm-based predictive model for difficult colonoscopy insertion
1
作者 Ren-Xuan Gao Xin-Lei Wang +6 位作者 Ming-Jie Tian Xiao-Ming Li Jia-Jia Zhang Jun-Jing Wang Jing Gao Chao Zhang Zhi-Ting Li 《World Journal of Gastrointestinal Endoscopy》 2025年第7期149-161,共13页
BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intr... BACKGROUND Difficulty of colonoscopy insertion(DCI)significantly affects colonoscopy effectiveness and serves as a key quality indicator.Predicting and evaluating DCI risk preoperatively is crucial for optimizing intraoperative strategies.AIM To evaluate the predictive performance of machine learning(ML)algorithms for DCI by comparing three modeling approaches,identify factors influencing DCI,and develop a preoperative prediction model using ML algorithms to enhance colonoscopy quality and efficiency.METHODS This cross-sectional study enrolled 712 patients who underwent colonoscopy at a tertiary hospital between June 2020 and May 2021.Demographic data,past medical history,medication use,and psychological status were collected.The endoscopist assessed DCI using the visual analogue scale.After univariate screening,predictive models were developed using multivariable logistic regression,least absolute shrinkage and selection operator(LASSO)regression,and random forest(RF)algorithms.Model performance was evaluated based on discrimination,calibration,and decision curve analysis(DCA),and results were visualized using nomograms.RESULTS A total of 712 patients(53.8%male;mean age 54.5 years±12.9 years)were included.Logistic regression analysis identified constipation[odds ratio(OR)=2.254,95%confidence interval(CI):1.289-3.931],abdominal circumference(AC)(77.5–91.9 cm,OR=1.895,95%CI:1.065-3.350;AC≥92 cm,OR=1.271,95%CI:0.730-2.188),and anxiety(OR=1.071,95%CI:1.044-1.100)as predictive factors for DCI,validated by LASSO and RF methods.Model performance revealed training/validation sensitivities of 0.826/0.925,0.924/0.868,and 1.000/0.981;specificities of 0.602/0.511,0.510/0.562,and 0.977/0.526;and corresponding area under the receiver operating characteristic curves(AUCs)of 0.780(0.737-0.823)/0.726(0.654-0.799),0.754(0.710-0.798)/0.723(0.656-0.791),and 1.000(1.000-1.000)/0.754(0.688-0.820),respectively.DCA indicated optimal net benefit within probability thresholds of 0-0.9 and 0.05-0.37.The RF model demonstrated superior diagnostic accuracy,reflected by perfect training sensitivity(1.000)and highest validation AUC(0.754),outperforming other methods in clinical applicability.CONCLUSION The RF-based model exhibited superior predictive accuracy for DCI compared to multivariable logistic and LASSO regression models.This approach supports individualized preoperative optimization,enhancing colonoscopy quality through targeted risk stratification. 展开更多
关键词 COLONOSCOPY Difficulty of colonoscopy insertion Machine learning algorithms predictive model Logistic regression Least absolute shrinkage and selection operator regression Random forest
暂未订购
NEURAL NETWORK PREDICTIVE CONTROL WITH HIERARCHICAL GENETIC ALGORITHM
2
作者 刘宝坤 王慧 李光泉 《Transactions of Tianjin University》 EI CAS 1998年第2期48-50,共3页
A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence da... A kind of predictive control based on the neural network(NN) for nonlinear systems with time delay is addressed.The off line NN model is obtained by using hierarchical genetic algorithms (HGA) to train a sequence data of input and output.Output predictions are obtained by recursively mapping the NN model.The error rectification term is introduced into a performance function that is directly optimized while on line control so that it overcomes influences of the mismatched model and disturbances,etc.Simulations show the system has good dynamic responses and robustness. 展开更多
关键词 neural networks(NN) predictive control hierarchical genetic algorithms nonlinear system
在线阅读 下载PDF
Application of Predictive Algorithm in Head-Tracking System
3
作者 姜明 李科杰 李鑫 《Journal of Beijing Institute of Technology》 EI CAS 2002年第3期306-310,共5页
The worldwide research status of head tracking is introduced and the works made in the research of the predictive algorithm and in the exploration of the rule of the head tracking are set forth. A time delay model f... The worldwide research status of head tracking is introduced and the works made in the research of the predictive algorithm and in the exploration of the rule of the head tracking are set forth. A time delay model for the telerobotic scout system is built. In respect of eliminating error caused by time delay and making reasonable prediction to the data stream, many methods are experimented in order to realize the aim of real time tracking. The application of extrapolation algorithm and auto recursive algorithm in the orientation tracking is described in detail. These two algorithms are realized in Matlab environment. Through analysis of the curves generated by using these two predictive algorithms, an appropriate method was applied in the telerobotic scout system. The effect is satisfying. 展开更多
关键词 TELEOPERATION head tracking predictive algorithm
全文增补中
APPLICATION OF PREDICTIVE CONTROL ALGORITHM IN SPEED CONTROL SYSTEM 被引量:6
4
作者 Chen Jida Zhang Qian Liao Liqing(College of Information Engineering, Central South University of Technology, Changsha, 410083, China) 《Journal of Central South University》 SCIE EI CAS 1995年第2期48-53,共6页
In view of DC speed control system, this paper presents a predictive control algorithm to replace traditional PID control. System predictive model requires little information of the controlled object, and because it... In view of DC speed control system, this paper presents a predictive control algorithm to replace traditional PID control. System predictive model requires little information of the controlled object, and because it adopts rolling optimum method, system 展开更多
关键词 predictive CONTROL algorithm DIGITAL TRIGGER PID comtrol
在线阅读 下载PDF
A NEW ALGORITHM FOR ADAPTIVE LATTICE FILTERAND ITS APPLICATION IN THE SPEECH LINEARPREDICTIVE SYNTHESIS 被引量:1
5
作者 Jiang Taihui (institute of Information Science, Wuji University Jiangmen, Guangdong 529020) 《Journal of Electronics(China)》 1996年第4期325-332,共8页
In this paper, an adaptive line spectral pair filter is derived from an adaptive lattice filter. A least-mean-square(LMS) type adaptive algorithm used to calculate directly the line spectral pair(LSP) coefficients on ... In this paper, an adaptive line spectral pair filter is derived from an adaptive lattice filter. A least-mean-square(LMS) type adaptive algorithm used to calculate directly the line spectral pair(LSP) coefficients on a stage-by-stage basis is presented. Experimental results show that the algorithm has higher convergence rate and lower misadjustment as compared with the other algorithms. The LSP coefficients calculated by the algorithm have been used to carry out speech linear predictive synthesis, resulting in better results than PARCOR coefficients. 展开更多
关键词 Line SPECTRAL PAIR FILTER Adaptive LATTICE FILTER Linear prediction LMS algorithm
在线阅读 下载PDF
Nonlinear model predictive control based on support vector machine and genetic algorithm 被引量:5
6
作者 冯凯 卢建刚 陈金水 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第12期2048-2052,共5页
This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used ... This paper presents a nonlinear model predictive control(NMPC) approach based on support vector machine(SVM) and genetic algorithm(GA) for multiple-input multiple-output(MIMO) nonlinear systems.Individual SVM is used to approximate each output of the controlled plant Then the model is used in MPC control scheme to predict the outputs of the controlled plant.The optimal control sequence is calculated using GA with elite preserve strategy.Simulation results of a typical MIMO nonlinear system show that this method has a good ability of set points tracking and disturbance rejection. 展开更多
关键词 Support vector machine Genetic algorithm Nonlinear model predictive control Neural network Modeling
在线阅读 下载PDF
Application of Dynamic Programming Algorithm Based on Model Predictive Control in Hybrid Electric Vehicle Control Strategy 被引量:1
7
作者 Xiaokan Wang Qiong Wang 《Journal on Internet of Things》 2020年第2期81-87,共7页
A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid el... A good hybrid vehicle control strategy cannot only meet the power requirements of the vehicle,but also effectively save fuel and reduce emissions.In this paper,the construction of model predictive control in hybrid electric vehicle is proposed.The solving process and the use of reference trajectory are discussed for the application of MPC based on dynamic programming algorithm.The simulation of hybrid electric vehicle is carried out under a specific working condition.The simulation results show that the control strategy can effectively reduce fuel consumption when the torque of engine and motor is reasonably distributed,and the effectiveness of the control strategy is verified. 展开更多
关键词 State of charge model predictive control dynamic programming algorithm OPTIMIZATION
在线阅读 下载PDF
Optimized Cardiovascular Disease Prediction Using Clustered Butterfly Algorithm
8
作者 Kamepalli S.L.Prasanna Vijaya J +2 位作者 Parvathaneni Naga Srinivasu Babar Shah Farman Ali 《Computers, Materials & Continua》 2025年第10期1603-1630,共28页
Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing h... Cardiovascular disease prediction is a significant area of research in healthcare management systems(HMS).We will only be able to reduce the number of deaths if we anticipate cardiac problems in advance.The existing heart disease detection systems using machine learning have not yet produced sufficient results due to the reliance on available data.We present Clustered Butterfly Optimization Techniques(RoughK-means+BOA)as a new hybrid method for predicting heart disease.This method comprises two phases:clustering data using Roughk-means(RKM)and data analysis using the butterfly optimization algorithm(BOA).The benchmark dataset from the UCI repository is used for our experiments.The experiments are divided into three sets:the first set involves the RKM clustering technique,the next set evaluates the classification outcomes,and the last set validates the performance of the proposed hybrid model.The proposed RoughK-means+BOA has achieved a reasonable accuracy of 97.03 and a minimal error rate of 2.97.This result is comparatively better than other combinations of optimization techniques.In addition,this approach effectively enhances data segmentation,optimization,and classification performance. 展开更多
关键词 Cardiovascular disease prediction healthcare management system clustering RoughK-means classification butterfly optimization algorithm
在线阅读 下载PDF
Physics-informed neural network optimized by particle swarm algorithm for accurate prediction of blast-induced peak particle velocity
9
作者 Lang Qiu Yujie Zhu +3 位作者 Chen Xu Gaofeng Ren Yingguo Hu Xiaoli Liu 《Intelligent Geoengineering》 2025年第3期126-140,共15页
Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV pred... Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV prediction by combining conventional empirical equations with physics-informed neural networks(PINN)and optimizing the model parameters via the Particle Swarm Optimization(PSO)algorithm.The proposed PSO-PINN framework was rigorously benchmarked against seven established machine learning approaches:Multilayer Perceptron(MLP),Extreme Gradient Boosting(XGBoost),Random Forest(RF),Support Vector Regression(SVR),Gradient Boosting Decision Tree(GBDT),Adaptive Boosting(Adaboost),and Gene Expression Programming(GEP).Comparative analysis showed that PSO-PINN outperformed these models,achieving RMSE reductions of 17.82-37.63%,MSE reductions of 32.47-61.10%,AR improvements of 2.97-21.19%,and R^(2)enhancements of 7.43-29.21%,demonstrating superior accuracy and generalization.Furthermore,the study determines the impact of incorporating empirical formulas as physical constraints in neural networks and examines the effects of different empirical equations,particle swarm size,iteration count in PSO,regularization coefficient,and learning rate in PINN on model performance.Lastly,a predictive system for blast vibration PPV is designed and implemented.The research outcomes offer theoretical references and practical recommendations for blast vibration forecasting in similar engineering applications. 展开更多
关键词 Peak particle velocity Blast-induced vibration Particle Swarm Optimization algorithm Physics-informed neural network prediction system
在线阅读 下载PDF
Predictive Ecological Cooperative Control of Electric Vehicles Platoon on Hilly Roads
10
作者 Bingbing Li Weichao Zhuang +4 位作者 Boli Chen Hao Zhang Sheng Yu Jianrun Zhang Guodong Yin 《Chinese Journal of Mechanical Engineering》 2025年第2期360-373,共14页
The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailin... The integration of eco-driving and cooperative adaptive cruise control(CACC)with platoon cooperative control(eco-CACC)has emerged as a pivotal approach for improving vehicle energy efficiency.Nonetheless,the prevailing eco-CACC implementations still exhibit limitations in fully harnessing the potential energy savings.This can be attributed to the intricate nature of the problem,characterized by its high nonlinearity and non-convexity,making it challenging for conventional solving methods to find solutions.In this paper,a novel strategy based on a decentralized model predictive control(MPC)framework,called predictive ecological cooperative control(PECC),is proposed for vehicle platoon control on hilly roads,aiming to maximize the overall energy efficiency of the platoon.Unlike most existing literature that focuses on suboptimal coordination under predefined leading vehicle trajectories,this strategy employs an approach based on the combination of a long short-term memory network(LSTM)and genetic algorithm(GA)optimization(GA-LSTM)to predict the future speed of the leading vehicle.Notably,a function named the NotchFilter function(NF(?))is introduced to transform the hard state constraints in the eco-CACC problem,thereby alleviating the burden of problem-solving.Finally,through simulation comparisons between PECC and a strategy based on the common eco-CACC modifications,the effectiveness of PECC in improving platoon energy efficiency is demonstrated. 展开更多
关键词 Electric vehicles platoon Model predictive control Energy efficiency Cooperative adaptive cruise control Genetic algorithm
在线阅读 下载PDF
A Feature Selection Method for Software Defect Prediction Based on Improved Beluga Whale Optimization Algorithm
11
作者 Shaoming Qiu Jingjie He +1 位作者 Yan Wang Bicong E 《Computers, Materials & Continua》 2025年第6期4879-4898,共20页
Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software ... Software defect prediction(SDP)aims to find a reliable method to predict defects in specific software projects and help software engineers allocate limited resources to release high-quality software products.Software defect prediction can be effectively performed using traditional features,but there are some redundant or irrelevant features in them(the presence or absence of this feature has little effect on the prediction results).These problems can be solved using feature selection.However,existing feature selection methods have shortcomings such as insignificant dimensionality reduction effect and low classification accuracy of the selected optimal feature subset.In order to reduce the impact of these shortcomings,this paper proposes a new feature selection method Cubic TraverseMa Beluga whale optimization algorithm(CTMBWO)based on the improved Beluga whale optimization algorithm(BWO).The goal of this study is to determine how well the CTMBWO can extract the features that are most important for correctly predicting software defects,improve the accuracy of fault prediction,reduce the number of the selected feature and mitigate the risk of overfitting,thereby achieving more efficient resource utilization and better distribution of test workload.The CTMBWO comprises three main stages:preprocessing the dataset,selecting relevant features,and evaluating the classification performance of the model.The novel feature selection method can effectively improve the performance of SDP.This study performs experiments on two software defect datasets(PROMISE,NASA)and shows the method’s classification performance using four detailed evaluation metrics,Accuracy,F1-score,MCC,AUC and Recall.The results indicate that the approach presented in this paper achieves outstanding classification performance on both datasets and has significant improvement over the baseline models. 展开更多
关键词 Software defect prediction feature selection beluga optimization algorithm triangular wandering strategy cauchy mutation reverse learning
在线阅读 下载PDF
A data-driven predictive model for solubility:A case study of the NaCl-Na_(2)SO_(4)-H_(2)O system
12
作者 Yuan Wang Mengyue Chen +2 位作者 Jingwei Tian Weidong Zhang Dahuan Liu 《Chinese Journal of Chemical Engineering》 2025年第8期254-265,共12页
Accurate prediction of solubility data in the Sodium Chloride-Sodium Sulfate-Water system is essential.It provides theoretical support for salt lake resource development and wastewater treatment technologies.This stud... Accurate prediction of solubility data in the Sodium Chloride-Sodium Sulfate-Water system is essential.It provides theoretical support for salt lake resource development and wastewater treatment technologies.This study proposes an innovative solubility prediction approach.It addresses the limitations of traditional thermodynamic models.This is particularly important when experimental data from various sources contain inconsistencies.Our approach combines the Weighted Local Outlier Factor technique for anomaly detection with a Deep Ensemble Neural Network architecture.This methodology effectively removes local outliers while preserving data distribution integrity,and integrates multiple neural network sub-models to comprehensively capture system features while minimizing individual model biases.Experimental validation demonstrates exceptional prediction performance across temperatures from−20℃to 150℃,achieving a coefficient of determination of 0.989 after Bayesian hyperparameter optimization.This data-driven approach provides more accurate and universally applicable solubility predictions than conventional thermodynamic models,offering theoretical guidance for industrial applications in salt lake resource utilization,separation process optimization,and environmental salt management systems. 展开更多
关键词 Weighted local outlier factor Deep ensemble neural network Solubility prediction Optimization algorithm Outlier detection
在线阅读 下载PDF
Study of improved gray predictive PID control algorithm 被引量:1
13
作者 XIE Shou-yong LI Xi-wen +1 位作者 YANG Shu-zi YANG Ming-jin 《重庆邮电大学学报(自然科学版)》 北大核心 2009年第2期189-191,共3页
According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated ... According to these characteristics of the movement of the special platform servo,a new improved grey predictive PID control algorithm was proposed based on the grey predictive PID,and then the algorithm was simulated by MATLAB.As a result that it can improve the response speed and stability of the system,and meet the demand of the system. 展开更多
关键词 PID控制算法 灰色预测 MATLAB 算法模拟 反应速度 系统 伺服
在线阅读 下载PDF
Neural Network Predictive Control of Variable-pitch Wind Turbines Based on Small-world Optimization Algorithm 被引量:8
14
作者 WANG Shuangxin LI Zhaoxia LIU Hairui 《中国电机工程学报》 EI CSCD 北大核心 2012年第30期I0015-I0015,17,共1页
通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述... 通过将混沌映射用于产生初始节点集和进行算子构造,提出一种新的基于实数编码的混沌小世界优化算法。采用4种算法对多例复杂函数的优化问题进行仿真试验,表明所提算法具有能够有效避免陷入局部极小值、快速搜索到最优值的能力。将上述方法应用于变桨距风电机组启动并网时的转速控制,提出一种基于混沌小世界优化算法的神经网络预测控制策略,其预测模型由基于现场数据的神经网络模型建立。仿真与实际测试结果表明,该系统可以根据风速扰动提前预测电机的转速变化,使控制器超前动作,保证系统输出跟踪参考轨迹的方向稳步改变,确保风电机组平稳并网。 展开更多
关键词 优化算法 小世界 风力发电机组 预测控制 神经网络 变桨距 实时编码 混沌映射
原文传递
Advanced Predictive Analytics for Green Energy Systems: An IPSS System Perspective
15
作者 Lei Shen Chutong Zhang +4 位作者 Yuwei Ge Shanyun Gu Qiang Gao Wei Li Jie Ji 《Energy Engineering》 2025年第4期1581-1602,共22页
The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis.This paper presents an innovative framework,the Intelligent ... The rapid development and increased installed capacity of new energy sources such as wind and solar power pose new challenges for power grid fault diagnosis.This paper presents an innovative framework,the Intelligent Power Stability and Scheduling(IPSS)System,which is designed to enhance the safety,stability,and economic efficiency of power systems,particularly those integrated with green energy sources.The IPSS System is distinguished by its integration of a CNN-Transformer predictive model,which leverages the strengths of Convolutional Neural Networks(CNN)for local feature extraction and Transformer architecture for global dependency modeling,offering significant potential in power safety diagnostics.TheIPSS System optimizes the economic and stability objectives of the power grid through an improved Zebra Algorithm,which aims tominimize operational costs and grid instability.Theperformance of the predictive model is comprehensively evaluated using key metrics such as Root Mean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),and Coefficient of Determination(R2).Experimental results demonstrate the superiority of the CNN-Transformer model,with the lowest RMSE and MAE values of 0.0063 and 0.00421,respectively,on the training set,and an R2 value approaching 1,at 0.99635,indicating minimal prediction error and strong data interpretability.On the test set,the model maintains its excellence with the lowest RMSE and MAE values of 0.009 and 0.00673,respectively,and an R2 value of 0.97233.The IPSS System outperforms other models in terms of prediction accuracy and explanatory power and validates its effectiveness in economic and stability analysis through comparative studies with other optimization algorithms.The system’s efficacy is further supported by experimental results,highlighting the proposed scheme’s capability to reduce operational costs and enhance system stability,making it a valuable contribution to the field of green energy systems. 展开更多
关键词 Advanced predictive analytics green energy systems IPSS system CNN-transformer predictivemodel economic and stability optimization improved zebra algorithm
在线阅读 下载PDF
Predictive FTF Adaptive Algorithm for Mobile Channels Estimation
16
作者 Qassim Nasir 《International Journal of Communications, Network and System Sciences》 2012年第9期569-578,共10页
The aim of this research paper is to improve the performance of Fast Transversal Filter (FTF) adaptive algorithm used for mobile channel estimation. A multi-ray Jakes mobile channel model with a Doppler frequency shif... The aim of this research paper is to improve the performance of Fast Transversal Filter (FTF) adaptive algorithm used for mobile channel estimation. A multi-ray Jakes mobile channel model with a Doppler frequency shift is used in the simulation. The channel estimator obtains the sampled channel impulse response (SIR) from the predetermined training sequence. The FTF is a computationally efficient implementation of the recursive least squares (RLS) algorithm of the conventional Kalman filter. A stabilization FTF is used to overcome the problem caused by the accumulation of roundoff errors, and, in addition, degree-one prediction is incorporated into the algorithm (Predictive FTF) to improve the estimation performance and to track changes of the mobile channel. The efficiency of the algorithm is confirmed by simulation results for slow and fast varying mobile channel. The results show about 5 to 15 dB improvement in the Mean Square Error (Deviation) between the estimated taps and the actual ones depending on the speed of channel time variations. Slow and fast vehicular channels with Doppler frequencies 100 Hz and 222 Hz respectively are used in these tests. The predictive FTF (PFTF) algorithm give a better channel SIR estimation performance than the conventional FTF algorithm, and it involves only a small increase in complexity. 展开更多
关键词 Mobile Channel ESTIMATION Fast TRANSVERSAL FILTER prediction Adaptive FILTERING algorithmS
在线阅读 下载PDF
Predictive Control Algorithm for Urban Rail Train Brake Control System Based on T-S Fuzzy Model
17
作者 Xiaokan Wang Qiong Wang Shuang Liang 《Computers, Materials & Continua》 SCIE EI 2020年第9期1859-1867,共9页
Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail... Urban rail transit has the advantages of large traffic capacity,high punctuality and zero congestion,and it plays an increasingly important role in modern urban life.Braking system is an important system of urban rail train,which directly affects the performance and safety of train operation and impacts passenger comfort.The braking performance of urban rail trains is directly related to the improvement of train speed and transportation capacity.Also,urban rail transit has the characteristics of high speed,short station distance,frequent starting,and frequent braking.This makes the braking control system constitute a time-varying,time-delaying and nonlinear control system,especially the braking force changes directly disturb the parking accuracy and comfort.To solve these issues,a predictive control algorithm based on T-S fuzzy model was proposed and applied to the train braking control system.Compared with the traditional PID control algorithm and self-adaptive fuzzy PID control algorithm,the braking capacity of urban rail train was improved by 8%.The algorithm can achieve fast and accurate synchronous braking,thereby overcoming the dynamic influence of the uncertainty,hysteresis and time-varying factors of the controlled object.Finally,the desired control objectives can be achieved,the system will have superior robustness,stability and comfort. 展开更多
关键词 predictive control T-S fuzzy model urban rail train algorithm
在线阅读 下载PDF
Employment of predictive search algorithm in digital image correlation
18
作者 马志峰 王昊 韩福海 《Journal of Beijing Institute of Technology》 EI CAS 2014年第2期254-259,共6页
A predictive search algorithm to estimate the size and direction of displacement vectors was presented.The algorithm decreased the time of calculating the displacement of each pixel.In addition,the updating reference ... A predictive search algorithm to estimate the size and direction of displacement vectors was presented.The algorithm decreased the time of calculating the displacement of each pixel.In addition,the updating reference image scheme was used to update the reference image and to decrease the computation time when the displacement was larger than a certain number.In this way,the search range and computational complexity were cut down,and less EMS memory was occupied.The capability of proposed search algorithm was then verified by the results of both computer simulation and experiments.The results showed that the algorithm could improve the efficiency of correlation method and satisfy the accuracy requirement for practical displacement measuring. 展开更多
关键词 machine vision predictive search algorithm digital image correlation sub-pixel displacement measurement
在线阅读 下载PDF
Predictive direct power control of three-phase PWM rectifier based on TOGI grid voltage sensor free algorithm
19
作者 ZHAO Feng LI Shute +4 位作者 CHEN Xiaoqiang WANG Ying GAN Yanqi NIU Xinqiang ZHANG Fan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2022年第4期451-459,共9页
In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)i... In predictive direct power control(PDPC)system of three-phase pulse width modulation(PWM)rectifier,grid voltage sensor makes the whole system more complex and costly.Therefore,third-order generalized integrator(TOGI)is used to generate orthogonal signals with the same frequency to estimate the grid voltage.In addition,in view of the deviation between actual and reference power in the three-phase PWM rectifier traditional PDPC strategy,a power correction link is designed to correct the power reference value.The grid voltage sensor free algorithm based on TOGI and the corrected PDPC strategy are applied to three-phase PWM rectifier and simulated on the simulation platform.Simulation results show that the proposed method can effectively eliminate the power tracking deviation and the grid voltage.The effectiveness of the proposed method is verified by comparing the simulation results. 展开更多
关键词 three-phase PWM rectifier predictive direct power control grid voltage sensor free algorithm third-order generalized integrator power correction
在线阅读 下载PDF
The Application Research of a Fast Recursive Predictive Algorithm on Medical X-ray Image Compression
20
作者 LIU Wen-sheng1,JIANG Da-zong21 The Science and Technology Division of Tianjin Economy Committee, Tianjin 300040,China 2 The BME Institute of Xian Jiaotong University, Xian 710049,China 《Chinese Journal of Biomedical Engineering(English Edition)》 2003年第2期72-79,共8页
This paper studied a fast recursive predictive algorithm used for medical X-ray image compression. This algorithm consists of mathematics model building, fast recursive algorithm deducing, initial value determining, s... This paper studied a fast recursive predictive algorithm used for medical X-ray image compression. This algorithm consists of mathematics model building, fast recursive algorithm deducing, initial value determining, step-size selecting, image compression encoding and original image recovering. The experiment result indicates that this algorithm has not only a higher compression ratio to medical X-ray images compression, but also promotes image compression speed greatly. 展开更多
关键词 FAST RECURSIVE predictive algorithm IMAGE compression
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部