The study of capture mechanisms with high capture adaptability is the key to improving the efficiency of autonomous underwater vehicle(AUV)retrieval and release.This study aims to develop a capture mechanism for the l...The study of capture mechanisms with high capture adaptability is the key to improving the efficiency of autonomous underwater vehicle(AUV)retrieval and release.This study aims to develop a capture mechanism for the launch and recovery of AUV and elucidate its kinematic characteristics.Initially,based on the principles of deployment and retraction for AUV capture movements,a design scheme for a novel foldable and deployable capture mechanism is proposed.Subsequently,a detailed analysis of the Degrees of Freedom(DoFs)for enveloping and grasping movements is conducted according to screw theory.Additionally,the structural design of the actuation units for the capture mechanism is thoroughly discussed.Motion screw topology diagram is utilized to construct the kinematic model.On this basis,kinematic simulation verification of the capture mechanism is performed.The theoretical analysis revealed that the DoF for enveloping and grasping movements are 6 and 2,respectively.By appropriately configuring the actuation mechanism,enveloping and grasping movements can be achieved with a single actuation.The displacement and velocity curves of the capture mechanism were smooth,with no interference occurring.Vibration test results validate the reliability of the capture mechanism.The research work provides a valuable reference for the development of novel capture equipment for AUVs.展开更多
基金Supported by Jiangsu Provincial Natural Science Foundation(Grant No.BK20220649)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.23KJB460010)+2 种基金Provincial Key Laboratory of High-end Deepsea Machinery Equipment(Grant Nos.SYH2024003 and SYH2025001)the Jiangsu Provincial Key R&D Project(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX25_2526).
文摘The study of capture mechanisms with high capture adaptability is the key to improving the efficiency of autonomous underwater vehicle(AUV)retrieval and release.This study aims to develop a capture mechanism for the launch and recovery of AUV and elucidate its kinematic characteristics.Initially,based on the principles of deployment and retraction for AUV capture movements,a design scheme for a novel foldable and deployable capture mechanism is proposed.Subsequently,a detailed analysis of the Degrees of Freedom(DoFs)for enveloping and grasping movements is conducted according to screw theory.Additionally,the structural design of the actuation units for the capture mechanism is thoroughly discussed.Motion screw topology diagram is utilized to construct the kinematic model.On this basis,kinematic simulation verification of the capture mechanism is performed.The theoretical analysis revealed that the DoF for enveloping and grasping movements are 6 and 2,respectively.By appropriately configuring the actuation mechanism,enveloping and grasping movements can be achieved with a single actuation.The displacement and velocity curves of the capture mechanism were smooth,with no interference occurring.Vibration test results validate the reliability of the capture mechanism.The research work provides a valuable reference for the development of novel capture equipment for AUVs.