This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adju...This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adjustable parameter is also developed to balance the exploration and exploitation operations.In addition,a jump mechanism is included in the PSAOAto assist individuals in jumping out of local optima.Using 29 classical benchmark functions,the proposed PSAOA is extensively tested.Compared to the AOA and other well-known methods,the experiments demonstrated that the proposed PSAOA beats existing comparison algorithms on the majority of the test functions.展开更多
This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul...This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.展开更多
基金partially supported by the Fundamental Research Funds for the Central Universities(WUT:2022IVA067)the National Natural Science Foundation of China(Grant No.:72172112)the Fundamental Research Funds for the Central Universities(HUST:2019kfyRCPY038).
文摘This paper proposes an enhanced arithmetic optimization algorithm(AOA)called PSAOA that incorporates the proposed probabilistic search strategy to increase the searching quality of the original AOA.Furthermore,an adjustable parameter is also developed to balance the exploration and exploitation operations.In addition,a jump mechanism is included in the PSAOAto assist individuals in jumping out of local optima.Using 29 classical benchmark functions,the proposed PSAOA is extensively tested.Compared to the AOA and other well-known methods,the experiments demonstrated that the proposed PSAOA beats existing comparison algorithms on the majority of the test functions.
文摘This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.