Layered oxides have attracted significant attention as cathodes for sodium-ion batteries(SIBs)due to their compositional versatility and tuneable electrochemical performance.However,these materials still face challeng...Layered oxides have attracted significant attention as cathodes for sodium-ion batteries(SIBs)due to their compositional versatility and tuneable electrochemical performance.However,these materials still face challenges such as structural phase transitions,Na^(+)/vacancy ordering,and Jahn–Teller distortion effect,resulting in severe capacity decay and sluggish ion kinetics.We develop a novel Cu/Y dual-doping strategy that leads to the formation of"Na–Y"interlayer aggregates,which act as structural pillars within alkali metal layers,enhancing structural stability and disrupting the ordered arrangement of Na^(+)/vacancies.This disruption leads to a unique coexistence of ordered and disordered Na^(+)/vacancy states with near-zero strain,which significantly improves Na^(+)diffusion kinetics.This structural innovation not only mitigates the unfavorable P2–O2 phase transition but also facilitates rapid ion transport.As a result,the doped material demonstrates exceptional electrochemical performance,including an ultra-long cycle life of 3000 cycles at 10 C and an outstanding high-rate capability of~70 mAh g^(−1)at 50 C.The discovery of this novel interlayer pillar,along with its role in modulating Na^(+)/vacancy arrangements,provides a fresh perspective on engineering layered oxides.It opens up promising new pathways for the structural design of advanced cathode materials toward efficient,stable,and high-rate SIBs.展开更多
基金supported by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province of China(No.2024C01056)。
文摘Layered oxides have attracted significant attention as cathodes for sodium-ion batteries(SIBs)due to their compositional versatility and tuneable electrochemical performance.However,these materials still face challenges such as structural phase transitions,Na^(+)/vacancy ordering,and Jahn–Teller distortion effect,resulting in severe capacity decay and sluggish ion kinetics.We develop a novel Cu/Y dual-doping strategy that leads to the formation of"Na–Y"interlayer aggregates,which act as structural pillars within alkali metal layers,enhancing structural stability and disrupting the ordered arrangement of Na^(+)/vacancies.This disruption leads to a unique coexistence of ordered and disordered Na^(+)/vacancy states with near-zero strain,which significantly improves Na^(+)diffusion kinetics.This structural innovation not only mitigates the unfavorable P2–O2 phase transition but also facilitates rapid ion transport.As a result,the doped material demonstrates exceptional electrochemical performance,including an ultra-long cycle life of 3000 cycles at 10 C and an outstanding high-rate capability of~70 mAh g^(−1)at 50 C.The discovery of this novel interlayer pillar,along with its role in modulating Na^(+)/vacancy arrangements,provides a fresh perspective on engineering layered oxides.It opens up promising new pathways for the structural design of advanced cathode materials toward efficient,stable,and high-rate SIBs.