期刊文献+
共找到5,992篇文章
< 1 2 250 >
每页显示 20 50 100
Durability of SAP-modified Fully Recycled Concrete under Freeze-Thaw Cycles
1
作者 XING Zhengguang PENG Erxing +3 位作者 ZHANG Mingyi PEI Wansheng HU Xiaoying SUN Haoyue 《Journal of Wuhan University of Technology(Materials Science)》 2026年第1期179-188,共10页
This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw ... This study introduces superabsorbent polymers(SAP)into recycled concrete and,through freeze-thaw cycle tests,unconfined compressive strength tests,and nuclear magnetic resonance(NMR)analysis,evaluates the freeze-thaw resistance and durability of recycled concrete samples under varying freeze-thaw cycles.The results indicate that an appropriate addition of SAP significantly enhances the freeze-thaw resistance of recycled concrete.After 200 freeze-thaw cycles,the RS0.6 sample retained good surface integrity,demonstrating the best performance.Compared to NAC,its mass loss decreased by 1.16%,the relative dynamic modulus improved by 7.01%,and the compressive strength loss rate decreased by 5.41%.Additionally,T2 spectrum analysis revealed that adding SAP optimized the pore structure of recycled concrete and mitigated pore development during freeze-thaw cycles.As the number of freeze-thaw cycles increased,the RS0.3 and RS0.6 samples demonstrated superior frost resistance compared to NAC.However,an excessive amount of SAP increased pore expansion during subsequent freeze-thaw cycles,ultimately weakening frost resistance. 展开更多
关键词 Recycled concrete SAP freeze-thaw cycle pore structure DURABILITY
原文传递
Study on the strength deterioration characteristics and microscopic mechanisms of moraine soil under freeze-thaw cycles
2
作者 Peng-fei Wang Ming-li Li +3 位作者 Ming Chang Jun-lin Jiang Fan Yang Zhi-qiang Zuo 《Journal of Groundwater Science and Engineering》 2026年第1期15-31,共17页
To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,... To investigate the strength degradation characteristics and microscopic damage mechanisms of moraine soil under hydro-thermo-mechanical coupling conditions,a series of X-ray Diffraction(XRD),standard triaxial testing,Scanning Electron Microscopy(SEM),and Nuclear Magnetic Resonance(NMR)experiments were conducted.The mechanical property degradation laws and evolution characteristics of the microscopic pore structure of moraine soil under Freeze-Thaw(F-T)conditions were revealed.After F-T cycles,the stress-strain curves of moraine soil showed a strain-softening trend.In the early stage of F-T cycles(0–5 cycles),the shear strength and elastic modulus exhibited damage rate of approximately 10.33%±0.8%and 16.60%±1.2%,respectively.In the later stage(10–20 cycles),the strength parameters fluctuated slightly and tended to stabilize.The number of F-T cycles was negatively exponentially correlated with cohesion,while showing only slight fluctuation in the internal friction angle,thereby extending the Mohr-Coulomb strength criterion for moraine soil under F-T cycles.The NMR experiments quantitatively characterized the evolution of the internal pore structure of moraine soil under F-T cycles.As the number of F-T cycles increased,fine and micro pores gradually expanded and merged due to the frost-heaving effect during the water-ice phase transition,forming larger pores.The proportion of large and medium pores increased to 59.55%±2.1%(N=20),while that of fine and micro pores decreased to 40.45%±2.1%(N=20).The evolution of pore structure characteristics was essentially completed in the later stage of F-T cycles(10–20 cycles).This study provides a theoretical foundation and technical support for major engineering construction and disaster prevention in the Qinghai-Xizang Plateau. 展开更多
关键词 Moraine soil in the Qinghai-Xizang Plateau F-T cycle Standard triaxial tests soil strength degradation Mohr-Coulomb criterion Microscopic pore structure
在线阅读 下载PDF
一种带有比较器交错的2-bit/cycle高速SAR ADC
3
作者 费秘 岳宏卫 韦善于 《微电子学》 北大核心 2025年第6期941-948,共8页
针对传统2-bit/cycle逐次逼近模数转换器(SAR ADC)中需要2^(N)个额外单位电容来提高速度的问题,基于CMOS 40 nm工艺提出了一种带有比较器交错的2-bit/cycle高速SAR ADC。该结构通过在最后一个比较周期自动切换不同尺寸大小的比较器来等... 针对传统2-bit/cycle逐次逼近模数转换器(SAR ADC)中需要2^(N)个额外单位电容来提高速度的问题,基于CMOS 40 nm工艺提出了一种带有比较器交错的2-bit/cycle高速SAR ADC。该结构通过在最后一个比较周期自动切换不同尺寸大小的比较器来等效减小参考电压的方法,将电容式数模转换器(CDAC)单位电容的使用量降低50%。此外,提出的比较器速度反馈系统能够在输入电压差较低时提高比较器的速度,并通过在采样保持电路中采用两段栅压自举和引入补偿电容的方法来降低噪声与失真。仿真结果表明,该ADC的分辨率为10 bit,采样频率为700 MS/s,在Nyquist输入频率下的SNDR为55.05 dB,SFDR为67.27 dB,整体功耗为2.91 mW,Walden FoM为9.20 fJ/conv.。 展开更多
关键词 2-bit/cycle 速度反馈 高速 SAR ADC 比较器交错
原文传递
鸭瘟病毒Cycleave荧光PCR检测方法的建立
4
作者 于新友 李天芝 苗立中 《中国动物传染病学报》 北大核心 2025年第2期106-110,共5页
为建立一种敏感、快速和特异的鸭瘟病毒(DPV)检测方法,本研究根据NCBI收录的DPV UL6基因序列,设计了1对特异性引物和1条Cycling探针,通过优化反应条件,建立了检测DPV的Cycleave荧光PCR检测方法。结果显示:该方法特异性高,不与其他常见... 为建立一种敏感、快速和特异的鸭瘟病毒(DPV)检测方法,本研究根据NCBI收录的DPV UL6基因序列,设计了1对特异性引物和1条Cycling探针,通过优化反应条件,建立了检测DPV的Cycleave荧光PCR检测方法。结果显示:该方法特异性高,不与其他常见鸭病病原体发生交叉反应,检测DPV灵敏度可达6.5拷贝/μL,批内与批间的变异系数均小于2%。研究表明,建立的DPV Cycleave荧光定量PCR方法特异性高、敏感性高、重复性好,可用于临床样品检测,为鸭瘟的诊断和防控奠定了基础。 展开更多
关键词 鸭瘟病毒 Cycling探针 cycleave荧光PCR 检测
在线阅读 下载PDF
Carbon emissions in China’s steel industry from a life cycle perspective:Carbon footprint insights 被引量:6
5
作者 Xiaocong Song Shuai Du +5 位作者 Chenning Deng Peng Shen Minghui Xie Ci Zhao Chen Chen Xiaoyu Liu 《Journal of Environmental Sciences》 2025年第2期650-664,共15页
China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for Ch... China is the most important steel producer in the world,and its steel industry is one of themost carbon-intensive industries in China.Consequently,research on carbon emissions from the steel industry is crucial for China to achieve carbon neutrality and meet its sustainable global development goals.We constructed a carbon dioxide(CO_(2))emission model for China’s iron and steel industry froma life cycle perspective,conducted an empirical analysis based on data from2019,and calculated the CO_(2)emissions of the industry throughout its life cycle.Key emission reduction factors were identified using sensitivity analysis.The results demonstrated that the CO_(2)emission intensity of the steel industry was 2.33 ton CO_(2)/ton,and the production and manufacturing stages were the main sources of CO_(2)emissions,accounting for 89.84%of the total steel life-cycle emissions.Notably,fossil fuel combustion had the highest sensitivity to steel CO_(2)emissions,with a sensitivity coefficient of 0.68,reducing the amount of fossil fuel combustion by 20%and carbon emissions by 13.60%.The sensitivities of power structure optimization and scrap consumption were similar,while that of the transportation structure adjustment was the lowest,with a sensitivity coefficient of less than 0.1.Given the current strategic goals of peak carbon and carbon neutrality,it is in the best interest of the Chinese government to actively promote energy-saving and low-carbon technologies,increase the ratio of scrap steel to steelmaking,and build a new power system. 展开更多
关键词 Iron and steel industry Life cycle Carbon dioxide(CO_(2))emissions Carbon footprint China
原文传递
Mechanical and microstructural properties of schist exposed to freezethaw cycles,dry-wet cycles,and alternating actions 被引量:2
6
作者 Jiajia Gao Jiajian Jin +5 位作者 Daguo Wang Shaogang Lei Jianguo Lu Huan Xiao Jinhe Li Huadong Li 《International Journal of Mining Science and Technology》 2025年第5期783-800,共18页
In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural prope... In cold regions,slope rocks are inevitably impacted by freeze-thaw,dry-wet cycles and their alternating actions,leading to strength weakening and pore degradation.In this study,the mechanical and microstructural properties of schist subjected to four conditions were investigated:freeze-thaw cycles in air(FTA),freeze-thaw cycles in water(FTW),dry-wet cycles(DW),and dry-wet-freeze-thaw cycles(DWFT).Uniaxial compressive strength(UCS),water absorption,ultrasonication,low-field nuclear magnetic resonance,and scanning electron microscopy analyses were conducted.The integrity attenuation characteristics of the longitudinal wave velocity,UCS,and elastic modulus were analyzed.The results showed that liquid water emerged as a critical factor in reducing the brittleness of schist.The attenuation function model accurately described the peak stress and static elastic modulus of schist in various media(R2>0.97).Different media affected the schist deterioration and half-life,with the FTW-immersed samples having a half-life of 28 cycles.Furthermore,the longitudinal wave velocity decreased as the number of cycles increased,with the FTW showing the most significant reduction and having the shortest half-life of 208 cycles.Moreover,the damage variables of compressive strength and elastic modulus increased with the number of cycles.After 40 cycles,the schist exposed to FTW exhibited the highest damage variables and saturated water content. 展开更多
关键词 SCHIST Mechanical property Microstructure Freeze-thaw cycles Dry-wet cycles
在线阅读 下载PDF
High cycle fatigue performance at 650℃and corresponding fracture behaviors of GH4169 joint produced by linear friction welding 被引量:2
7
作者 Shitong MA Xiawei YANG +6 位作者 Zhenguo GUO Yu SU Xinyuan HE Ju LI Jun TAO Bo XIAO Wenya LI 《Chinese Journal of Aeronautics》 2025年第1期622-637,共16页
GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 58... GH4169 joints manufactured by Linear Friction Welding(LFW)are subjected to tensile test and stair-case method to evaluate the High Cycle Fatigue(HCF)performance at 650℃.The yield and ultimate tensile strengths are 582 MPa and 820 MPa,respectively.The HCF strength of joint reaches 400 MPa,which is slightly lower than that of Base Metal(BM),indicating reliable quality of this type of joint.The microstructure observation results show that all cracks initiate at the inside of specimens and transfer into deeper region with decrease of external stress,and the crack initiation site is related with microhardness of matrix.The Electron Backscattered Diffraction(EBSD)results of the observed regions with different distances to fracture show that plastic deformation plays a key role in HCF,and the Schmid factor of most grains near fracture exceeds 0.4.In addition,the generation of twins plays a vital role in strain concentration release and coordinating plastic deformation among grains. 展开更多
关键词 High cycle fatigue GH4169 superalloy Linear friction welding Fracture mechanism Microstructure evolution
原文传递
Qingqi Guxue Decoction induces S cell cycle arrest to inhibit replication of severe fever with thrombocytopenia syndrome virus 被引量:2
8
作者 Xixi Shi Zining Wang +5 位作者 Zixiang Liu Qinting Lin Mengqian Huang Tze Yean Lim Xiaoyan Li Tao Wang 《Virologica Sinica》 2025年第2期260-274,共15页
Severe fever with thrombocytopenia syndrome(SFTS)is a novel emerging acute infectious disease caused by severe fever with thrombocytopenia syndrome virus(SFTSV),characterized by high fever and thrombocytopenia.It has ... Severe fever with thrombocytopenia syndrome(SFTS)is a novel emerging acute infectious disease caused by severe fever with thrombocytopenia syndrome virus(SFTSV),characterized by high fever and thrombocytopenia.It has been proved that traditional Chinese medicine(TCM)has displayed definite therapeutic effects on viral hemorrhagic fever,indicating its potential to treat SFTS.In this study,SFTS-relative key targets were predicted via gene ontology(GO)analysis and kyoto encyclopedia of genes and genomes(KEGG)enrichment analysis.Molecular docking was then used to select stable binders.Molecules matched TCMs were identified,and a new prescription,Qingqi Guxue decoction(QQGX),was formulated to clear heat and nourish blood,with a resulting drug composition network.We explored the optimal drug proportion for QQGX.Through an in-depth study of molecular mechanisms,we found that QQGX induces S phase arrest by promoting the degradation of cyclin A2(CCNA2)and cyclin-dependent kinase 2(CDK2),thereby inhibiting SFTSV replication.Finally,we verified the effectiveness and safety of QQGX based on the mouse liver bile duct organoid model infected with SFTSV.In summary,our study prepared a TCM decoction using the method of network pharmacology.This decoction has a significant inhibitory effect on the replication of SFTSV and provides a new treatment strategy for hemorrhagic fever with TCM. 展开更多
关键词 Qingqi Guxue decoction(QQGX) Severe fever with thrombocytopenia syndrome virus(SFTSV) Traditional Chinese medicine(TCM) Cell cycle S arrest
原文传递
Microstructure deterioration of sandstone under freeze-thaw cycles using CT technology:The effects of different water immersion conditions 被引量:2
9
作者 Bei Qiu Lifeng Fan Xiuli Du 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1599-1611,共13页
In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical... In cold regions,rock structures will be weakened by freeze-thaw cycles under various water immersion conditions.Determining how water immersion conditions impact rock deterioration under freeze-thaw cycles is critical to assess accurately the frost resistance of engineered rock.In this paper,freeze-thaw cycles(temperature range of-20℃-20℃)were performed on the sandstones in different water immersion conditions(fully,partially and non-immersed in water).Then,computed tomography(CT)tests were conducted on the sandstones when the freeze-thaw number reached 0,5,10,15,20 and 30.Next,the effects of water immersion conditions on the microstructure deterioration of sandstone under freezethaw cycles were evaluated using CT spatial imaging,porosity and damage factor.Finally,focusing on the partially immersed condition,the immersion volume rate was defined to understand the effects of immersion degree on the freeze-thaw damage of sandstone and to propose a damage model considering the freeze-thaw number and immersion degree.The results show that with increasing freeze-thaw number,the porosities and damage factors under fully and partially immersed conditions increase continuously,while those under non-immersed condition first increase and then remain approximately constant.The most severe freeze-thaw damage occurs in fully immersed condition,followed by partially immersed condition and finally non-immersed condition.Interestingly,the freeze-thaw number and the immersion volume rate both impact the microstructure deterioration of the partially immersed sandstone.For the same freeze-thaw number,the damage factor increases approximately linearly with increasing immersion volume rate,and the increasing immersion degree exacerbates the microstructure deterioration of sandstone.Moreover,the proposed model can effectively estimate the freeze-thaw damage of partially immersed sandstone with different immersion volume rates. 展开更多
关键词 Freeze-thaw cycles Water immersion condition Computed tomography(CT) Microstructure deterioration SANDSTONE
在线阅读 下载PDF
Performance of stabilized copper mine tailings with freeze-thaw and wet-dry seasonal cycles 被引量:2
10
作者 Uddav Ghimire Tejo V.Bheemasetti Hee-Jeong Kim 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第3期1418-1428,共11页
Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycli... Approximately 3.44 billion tons of copper mine tailings(MT)were produced globally in 2018 with an increase of 45%from 2010.Significant efforts are being made to manage these tailings through storage facilities,recycling,and reuse in different industries.Currently,a large portion of tailings are managed through the tailing storage facilities(TSF)where these tailings undergo hydro-thermal-mechanical stresses with seasonal cycles which are not comprehensively understood.This study presents an investigative study to evaluate the performance of control and cement-stabilized copper MT under the influence of seasonal cycles,freeze-thaw(F-T)and wet-dry(W-D)conditions,representing the seasonal variability in the cold and arid regions.The control and cement-stabilized MT samples were subjected to a maximum of 12 F-T and 12 W-D cycles and corresponding micro-and-macro behavior was investigated through scanning electron microscope(SEM),volumetric strain(εvT,wet density(r),moisture content loss,and unconfined compressive strength(UCS)tests.The results indicated the vulnerability of Copper MT to 67%and 75%strength loss reaching residual states with 12 F-T and 8 W-D cycles,respectively.Whereas the stabilized MT retained 39%-55%and 16%-34%strength with F-T and W-D cycles,demonstrating increased durability.This research highlights the impact of seasonal cycles and corresponding strength-deformation characteristics of control and stabilized Copper MT in cold and arid regions. 展开更多
关键词 Copper mine tailings(MT) Stabilization Seasonal cycles Cold and arid region
在线阅读 下载PDF
Macro-micro tests of cohesive soil under varied normal and shear stresses subjected to drying-wetting cycles 被引量:1
11
作者 Fangyue Luo Ga Zhang Yangping Yao 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第9期5893-5905,共13页
The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analy... The mechanical behavior of cohesive soil is sensitized to drying-wetting cycles under confinements.However,the hydromechanical coupling effect has not been considered in current constitutive models.A macro-micro analysis scheme is proposed in this paper to investigate the soil deformation behavior under the coupling of stress and drying-wetting cycles.A new device is developed based on CT(computerized tomography)workstation to apply certain normal and shear stresses on a soil specimen during drying-wetting cycles.A series of tests are conducted on a type of loess with various coupling of stress paths and drying-wetting cycles.At macroscopic level,stress sensor and laser sensor are used to acquire stress and strain,respectively.The shear and volumetric strain increase during the first few drying-wetting cycles and then become stable.The increase of the shear stress level or confining pressure would cause higher increase rate and the value of shear strain in the process of drying-wetting cycles.At microscopic level,the grayscale value(GSV)of CT scanning image is characterized as the proportion of soil particles to voids.A fabric state parameter is proposed to characterize soil microstructures under the influence of stress and drying-wetting cycle.Test results indicate that the macroand micro-responses show high consistence and relevance.The stress and drying-wetting cycles would both induce collapse of the soil microstructure,which dominants degradation of the soil mechanical properties.The evolution of the macro-mechanical property of soil exhibits a positive linear relationship with the micro-evolution of the fabric state parameter. 展开更多
关键词 Cohesive soil Drying-wetting cycle Coupled loading Macro and micro test FABRIC
在线阅读 下载PDF
Expansion mechanism of sulfate attack on cement-treated aggregates under freeze-thaw cycles 被引量:1
12
作者 Qi WANG Jiankun LIU +3 位作者 Xu LI Pengcheng WANG Jingyu LIU Mingzhi SUN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第1期36-49,共14页
Sulfate attack-induced expansion of cement-treated aggregates in seasonally frozen regions is a well-known issue which causes continuous expansion in railway subgrades,and particularly in high-speed railways.According... Sulfate attack-induced expansion of cement-treated aggregates in seasonally frozen regions is a well-known issue which causes continuous expansion in railway subgrades,and particularly in high-speed railways.Accordingly,we investigated the influence of material proportions,the number of freeze-thaw(FT)cycles,and temperature gradients on the expansion mechanism of sulfate attack on cement-treated aggregates subjected to FT cycles.The conditions,laws,and dominant factors causing the expansion of aggregates were analyzed through swelling tests.The results indicate that under FT cycles,3%content cement-treated graded macadam only experiences slight deformation.The maximum strain of graded macadam attacked by 1%sodium sulfate content in each FT cycle is significantly larger than that of 3%content cement-treated graded macadam attacked by 1%sodium sulfate content.Using scanning electron microscopy,needle-like crystals were observed during sulfate attack of cement-treated graded macadam.Through quantitative analysis,we determined the recoverable and unrecoverable deformations of graded macadam under FT cycles.For graded macadam under sulfate attack,the expansion is mainly induced by periodic frost heave and salt expansion,as well as salt migration.For cement-treated graded macadam under sulfate attack,the expansion is mainly induced by chemical attack and salt migration.This study can serve as a reference for future research on the mechanics of sulfate attack on cement-treated aggregates that experience FT cycles,and provide theoretical support for methods that remediate the expansion induced by sulfate attack. 展开更多
关键词 Sulfate attack Freeze-thaw(FT)cycle Expansion Cement-treated aggregates Dominant factors
原文传递
Study of entropy Weight-Grey theory-BP Network life prediction Model of unit silica fume concrete lining under the influence of carbonation-sulfate freeze-thaw cycle erosion 被引量:1
13
作者 ZhiMin Chen MingYang Yi +9 位作者 Meng Zhang ZhiQiang Yang JunHui Liu QianLong Yuan DianQiang Wang Hui Long HaoYong Zhang PengJi Zheng HongYan Shang ShengYi Xie 《Research in Cold and Arid Regions》 2025年第2期127-135,共9页
To address the challenges posed by tunnel construction in the alpine region,silica fume mixed concrete is commonly used as a construction material.The correlation between silica fume content and the lining life requir... To address the challenges posed by tunnel construction in the alpine region,silica fume mixed concrete is commonly used as a construction material.The correlation between silica fume content and the lining life requires immediate investigation.In view of this phenomenon,the durability of unit lining concrete is predicted by analyzing three key indicators:carbonation depth,relative dynamic elastic modulus,and residual quality.This prediction is achieved by integrating the Entropy Weight Method,Grey theory life prediction model and BP artificial neural networks using data from tests and predictions of these indicators.Then,the Entropy Weight-Grey theory-BP Network Model is compared with other methods to analyze the predicted life.Finally,verify the sci-entificity of this model,and the optimum silica fume content of unit concrete lining is verified.The results showed,1)The addition of silica fume will accelerate the carbonization of unit concrete lining,and slow down the freeze-thaw cycle and sulfate erosion.2)The utilization of artificial neural networks is essential for enhancing the realism of the data,as it emphasizes the significance of silica fume content.3)Silica fume content of 10%results in the longest life and is the most suitable for lining construction.4)A comparison between single-factor and multi-factor predictions indicates that the multi-factor approach yields a longer maximum life.This improvement can be attributed to the inclusion of additional factors,such as freeze-thaw cycles and carbonation,which enhance the predicted life when employing these methods.In conclusion,the Entropy Weight-Grey Theory-BP Network life prediction Model is well-suited for tunnel lining in the alpine sulfate area of northwest China. 展开更多
关键词 Lining life prediction Carbonation depth Relative dynamic elastic modulus Freeze-thaw cycle erosion Residual mass Sulfate attack
在线阅读 下载PDF
Recent advances in regulating the cell cycle through inhibiting CDKs for cancer treatment 被引量:1
14
作者 Weijiao Chen Xujie Zhuang +6 位作者 Yuanyuan Chen Huanaoyu Yang Linhu Shen Sikai Feng Wenjian Min Kai Yuan Peng Yang 《Chinese Journal of Natural Medicines》 2025年第3期286-298,共13页
The inhibition of cyclin-dependent kinases(CDKs)is considered a promising strategy for cancer treatment due to their role in cell cycle regulation.However,CDK inhibitors with no selectivity among CDK families have not... The inhibition of cyclin-dependent kinases(CDKs)is considered a promising strategy for cancer treatment due to their role in cell cycle regulation.However,CDK inhibitors with no selectivity among CDK families have not been approved.A CDK inhibitor with high selectivity for CDK4/6 exhibited significant treatment effects on breast cancer and has become a heavy bomb on the market.Subsequently,resistance gradually decreased the efficacy of selective CDK4/6 inhibitors in breast cancer treatment.In this review,we first introduce the development of selective CDK4/6 inhibitors and then explain the role of CDK2 activation in inducing resistance to CDK4/6 inhibitors.Moreover,we focused on the development of CDK2/4/6 inhibitors and selective CDK2 inhibitors,which will aid in the discovery of novel CDK inhibitors targeting the cell cycle in the future. 展开更多
关键词 Cell cycle Cyclin-dependent kinase(CDK) CDK inhibitor RESISTANCE
原文传递
Hemispheric prediction of solar cycles 25 and 26 from multivariate sunspot time-series data via Informer models 被引量:1
15
作者 Jie Cao Tingting Xu +6 位作者 Linhua Deng Xueliang Zhou Xinhua Zhao Nanbin Xiang Fuyu Li Miao Wan Weihong Zhou 《Astronomical Techniques and Instruments》 2025年第1期16-26,共11页
Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learnin... Solar activity plays an important role in influencing space weather,making it important to understand numerous aspects of spatial and temporal variations in the Sun's radiative output.High-performance deep learning models and long-term observational records of sunspot relative numbers are essential for solar cycle forecasting.Using the multivariate time series of monthly sunspot relative numbers provided by the National Astronomical Observatory of Japan and two Informer-based models,we forecast the amplitude and timing of solar cycles 25 and 26.The main results are as follows:(1)The maximum amplitude of solar cycle 25 is higher than the previous solar cycle 24 and the following solar cycle 26,suggesting that the long-term oscillatory variation of sunspot magnetic fields is related to the roughly centennial Gleissberg cyclicity.(2)Solar cycles 25 and 26 exhibit a pronounced Gnevyshev gap,which might be caused by two non-coincident peaks resulting from solar magnetic flux transported by meridional circulation and mid-latitude diffusion in the convection zone.(3)Hemispheric prediction of sunspot activity reveals a significant northsouth asynchrony,with activity level of the Sun being more intense in the southern hemisphere.These results are consistent with expectations derived from precursor methods and dynamo theories,and further provide evidence for internal changes in solar magnetic field during the decay of the Modern Maximum. 展开更多
关键词 Solar magnetic fields Solar cycle Deep learning
在线阅读 下载PDF
Effects of high temperature and thermal cycles on fracture surface's roughness of granite:An insight on 3D morphology 被引量:1
16
作者 Qixiong Gu Zhen Huang +5 位作者 Kui Zhao Wen Zhong Li Liu Xiaozhao Li Yun Wu Ma Dan 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期810-826,共17页
The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle o... The roughness of the fracture surface directly affects the strength,deformation,and permeability of the surrounding rock in deep underground engineering.Understanding the effect of high temperature and thermal cycle on the fracture surface roughness plays an important role in estimating the damage degree and stability of deep rock mass.In this paper,the variations of fracture surface roughness of granite after different heating and thermal cycles were investigated using the joint roughness coefficient method(JRC),three-dimensional(3D)roughness parameters,and fractal dimension(D),and the mechanism of damage and deterioration of granite were revealed.The experimental results show an increase in the roughness of the granite fracture surface as temperature and cycle number were incremented.The variations of JRC,height parameter,inclination parameter and area parameter with the temperature conformed to the Boltzmann's functional distribution,while the D decreased linearly as the temperature increased.Besides,the anisotropy index(Ip)of the granite fracture surface increased as the temperature increased,and the larger parameter values of roughness characterization at different temperatures were attained mainly in directions of 20°–40°,60°–100°and 140°–160°.The fracture aperture of granite after fracture followed the Gauss distribution and the average aperture increased with increasing temperature,which increased from 0.665 mm at 25℃to 1.058 mm at 800℃.High temperature caused an uneven thermal expansion,water evaporation,and oxidation of minerals within the granite,which promoted the growth and expansion of microfractures,and reduced interparticle bonding strength.In particular,the damage was exacerbated by the expansion and cracking of the quartz phase transition after T>500℃.Thermal cycles contributed to the accumulation of this damage and further weakened the interparticle bonding forces,resulting in a significant increase in the roughness,anisotropy,and aperture of the fracture surface after five cycles. 展开更多
关键词 GRANITE Thermal cycles High temperature Fracture surface roughness ANISOTROPIC Thermal damage
在线阅读 下载PDF
Impacts of the annual cycle of background SST in the tropical Pacific on the phase and amplitude of ENSO
17
作者 Song Jiang Congwen Zhu Ning Jiang 《Atmospheric and Oceanic Science Letters》 2025年第1期12-17,共6页
The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO).... The dominant annual cycle of sea surface temperature(SST)in the tropical Pacific exhibits an antisymmetric mode,which explains 83.4%total variance,and serves as a background of El Niño-Southern Oscillation(ENSO).However,there is no consensus yet on its anomalous impacts on the phase and amplitude of ENSO.Based on data during 1982-2022,results show that anomalies of the antisymmetric mode can affect the evolution of ENSO on the interannual scale via Bjerknes feedback,in which the positive(negative)phase of the antisymmetric mode can strengthen El Niño(La Niña)in boreal winter via an earlier(delayed)seasonal cycle transition and larger(smaller)annual mean.The magnitude of the SST anomalies in the equatorial eastern Pacific can reach more than±0.3◦C,regulated by the changes in the antisymmetric mode based on random sensitivity analysis.Results reveal the spatial pattern of the annual cycle associated with the seasonal phase-locking of ENSO evolution and provide new insight into the impact of the annual cycle of background SST on ENSO,which possibly carries important implications for forecasting ENSO. 展开更多
关键词 Annual cycle SST anomaly Antisymmetric mode ENSO
在线阅读 下载PDF
Solar cycles during the seventeenth century revealed by equatorial aurora records
18
作者 Yong Wei LiMei Yan 《Earth and Planetary Physics》 EI CAS 2025年第1期182-187,共6页
Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while al... Solar cycles are fundamental to astrophysics,space exploration,technological infrastructure,and Earth's climate.A better understanding of these cycles and their history can aid in risk mitigation on Earth,while also deepening our knowledge of stellar physics and solar system dynamics.Determining the solar cycles between 1600 and 1700-especially the post-1645 Maunder Minimum,characterized by significantly reduced solar activity-poses challenges to existing solar activity proxies.This study utilizes a new red equatorial auroral catalog from ancient Korean texts to establish solar cycle patterns from 1623 to 1700.Remarkably,a further reevaluation of the solar cycles between 1610 and 1755 identified a total of 13 cycles,diverging from the widely accepted record of 12 cycles during that time.This research enhances our understanding of historical solar activity,and underscores the importance of integrating diverse historical sources into modern analyses. 展开更多
关键词 solar cycle Maunder Minimum solar activity red equatorial aurora West Pacific geomagnetic anomaly
在线阅读 下载PDF
Evolution of the volume expansion of SiO/C composite electrodes in lithium-ion batteries during aging cycles
19
作者 Haosong Yang Kai Sun +2 位作者 Xueyan Li Peng Tan Lili Gong 《中国科学技术大学学报》 北大核心 2025年第2期27-33,26,I0001,共9页
As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation ... As a negative electrode material for lithium-ion batteries,silicon monoxide(SiO)suffers from dramatic volume changes during cycling,causing excessive stress within the electrode and resulting in electrode deformation and fragmentation.This ultimately leads to a decrease in cell capacity.The trends of volume expansion and capacity change of the SiO/graphite(SiO/C)composite electrode during cycling were investigated via in situ expansion monitoring.First,a series of expansion test schemes were designed,and the linear relationship between negative electrode expansion and cell capacity degradation was quantitatively analyzed.Then,the effects of different initial pressures on the long-term cycling performance of the cell were evaluated.Finally,the mechanism of their effects was analyzed by scanning electron microscope.The results show that after 50 cycles,the cell capacity decreases from 2.556 mAh to 1.689 mAh,with a capacity retention ratio(CRR)of only 66.08%.A linear relationship between the capacity retention ratio and thickness expansion was found.Electrochemical measurements and scanning electron microscope images demonstrate that intense stress inhibits the lithiation of the negative electrode and that the electrode is more susceptible to irreversible damage during cycling.Overall,these results reveal the relationship between the cycling performance of SiO and the internal pressure of the electrode from a macroscopic point of view,which provides some reference for the application of SiO/C composite electrodes in lithium-ion batteries. 展开更多
关键词 lithium-ion batteries in situ expansion measurement initial stress cycle life SiO/C composite electrode
在线阅读 下载PDF
Enhancing Cycle Life of Graphite‖LiFePO_(4)Batteries via Copper Substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)Cathode Prelithiation Additive
20
作者 Jian-Ming Zheng Jing-Wen Zhang Tian-Peng Jiao 《电化学(中英文)》 北大核心 2025年第2期17-27,共11页
Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)Ni... Lithium nickel oxide(Li_(2)NiO_(2)),as a sacrificial cathode prelithiation additive,has been used to compensate for the lithium loss for improving the lifespan of lithium-ion batteries(LIBs).However,high-cost Li_(2)NiO_(2)suffers from inferior delithiation kinetics during the first cycle.Herein,we investigated the effects of the cost-effective copper substituted Li_(2)Ni_(1-x)Cu_(x)O_(2)(x=0,0.2,0.3,0.5,0.7)synthesized by a high-temperature solid-phase method on the structure,morphology,electrochemical performance of graphite‖LiFePO_(4)battery.The X-ray diffraction(XRD)refinement result demonstrated that Cu substitution strategy could be favorable for eliminating the NiO_(x)impurity phase and weakening Li-O bond.Analysis on density of states(DOS)indicates that Cu substitution is good for enhancing the electronic conductivity,as well as reducing the delithi-ation voltage polarization confirmed by electrochemical characterizations.Therefore,the optimal Li_(2)Ni_(0.7)Cu_(0.3)O_(2)delivered a high delithiation capacity of 437 mAh·g^(-1),around 8%above that of the pristine Li_(2)NiO_(2).Furthermore,a graphite‖LiFePO_(4)pouch cell with a nominal capacity of 3000 mAh demonstrated a notably improved reversible capacity,energy density and cycle life through introducing 2 wt%Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive,delivering a 6.2 mAh·g^(-1)higher initial discharge capacity and achieving around 5%improvement in capacity retentnion at 0.5P over 1000 cycles.Additionally,the post-mortem analyses testified that the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive could suppress solid electrolyte interphase(SEI)decomposition and homogenize the Li distribution,which benefits to stabilizing interface between graphite and electrolyte,and alleviating dendritic Li plating.In conclusion,the Li_(2)Ni_(0.7)Cu_(0.3)O_(2)additive may offer advantages such as lower cost,lower delithiation voltage and higher prelithiation capacity compared with Li_(2)NiO_(2),making it a promising candidate of cathode prelithiation additive for next-generation LIBs. 展开更多
关键词 Li_(2)Ni_(1-x)Cu_(x)O_(2) Cathode prelithiation additive LiFePO_(4)battery cycle life Grid energy storage
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部