期刊文献+
共找到3,701篇文章
< 1 2 186 >
每页显示 20 50 100
Progress in MOF-based catalyst design and reaction mechanisms for CO_(2)hydrogenation to methanol
1
作者 YU Zhifu JIANG Lei WU Mingbo 《燃料化学学报(中英文)》 北大核心 2026年第1期146-162,共17页
Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon... Against the backdrop of escalating global climate change and energy crises,the resource utilization of carbon dioxide(CO_(2)),a major greenhouse gas,has become a crucial pathway for achieving carbon peaking and carbon neutrality goals.The hydrogenation of CO_(2)to methanol not only enables carbon sequestration and recycling,but also provides a route to produce high value-added fuels and basic chemical feedstocks,holding significant environmental and economic potential.However,this conversion process is thermodynamically and kinetically limited,and traditional catalyst systems(e.g.,Cu/ZnO/Al_(2)O_(3))exhibit inadequate activity,selectivity,and stability under mild conditions.Therefore,the development of novel high-performance catalysts with precisely tunable structures and functionalities is imperative.Metal-organic frameworks(MOFs),as crystalline porous materials with high surface area,tunable pore structures,and diverse metal-ligand compositions,have the great potential in CO_(2)hydrogenation catalysis.Their structural design flexibility allows for the construction of well-dispersed active sites,tailored electronic environments,and enhanced metal-support interactions.This review systematically summarizes the recent advances in MOF-based and MOF-derived catalysts for CO_(2)hydrogenation to methanol,focusing on four design strategies:(1)spatial confinement and in situ construction,(2)defect engineering and ion-exchange,(3)bimetallic synergy and hybrid structure design,and(4)MOF-derived nanomaterial synthesis.These approaches significantly improve CO_(2)conversion and methanol selectivity by optimizing metal dispersion,interfacial structures,and reaction pathways.The reaction mechanism is further explored by focusing on the three main reaction pathways:the formate pathway(HCOO*),the RWGS(Reverse Water Gas Shift reaction)+CO*hydrogenation pathway,and the trans-COOH pathway.In situ spectroscopic studies and density functional theory(DFT)calculations elucidate the formation and transformation of key intermediates,as well as the roles of active sites,metal-support interfaces,oxygen vacancies,and promoters.Additionally,representative catalytic performance data for MOFbased systems are compiled and compared,demonstrating their advantages over traditional catalysts in terms of CO_(2)conversion,methanol selectivity,and space-time yield.Future perspectives for MOF-based CO_(2)hydrogenation catalysts will prioritize two main directions:structural design and mechanistic understanding.The precise construction of active sites through multi-metallic synergy,defect engineering,and interfacial electronic modulation should be made to enhance catalyst selectivity and stability.In addition,advanced in situ characterization techniques combined with theoretical modeling are essential to unravel the detailed reaction mechanisms and intermediate behaviors,thereby guiding rational catalyst design.Moreover,to enable industrial application,challenges related to thermal/hydrothermal stability,catalyst recyclability,and cost-effective large-scale synthesis must be addressed.The development of green,scalable preparation methods and the integration of MOF catalysts into practical reaction systems(e.g.,flow reactors)will be crucial for bridging the gap between laboratory research and commercial deployment.Ultimately,multi-scale structure-performance optimization and catalytic system integration will be vital for accelerating the industrialization of MOF-based CO_(2)-to-methanol technologies. 展开更多
关键词 CO_(2)hydrogenation metal-organic frameworks(MOFs) catalyst design reaction mechanism METHANOL
在线阅读 下载PDF
Recent Advances in Regulation Strategy and Catalytic Mechanism of Bi-Based Catalysts for CO_(2) Reduction Reaction
2
作者 Jianglong Liu Yunpeng Liu +5 位作者 Shunzheng Zhao Baotong Chen Guang Mo Zhongjun Chen Yuechang Wei Zhonghua Wu 《Nano-Micro Letters》 2026年第1期647-697,共51页
Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespr... Using photoelectrocatalytic CO_(2) reduction reaction(CO_(2)RR)to produce valuable fuels is a fascinating way to alleviate environmental issues and energy crises.Bismuth-based(Bi-based)catalysts have attracted widespread attention for CO_(2)RR due to their high catalytic activity,selectivity,excellent stability,and low cost.However,they still need to be further improved to meet the needs of industrial applications.This review article comprehensively summarizes the recent advances in regulation strategies of Bi-based catalysts and can be divided into six categories:(1)defect engineering,(2)atomic doping engineering,(3)organic framework engineering,(4)inorganic heterojunction engineering,(5)crystal face engineering,and(6)alloying and polarization engineering.Meanwhile,the corresponding catalytic mechanisms of each regulation strategy will also be discussed in detail,aiming to enable researchers to understand the structure-property relationship of the improved Bibased catalysts fundamentally.Finally,the challenges and future opportunities of the Bi-based catalysts in the photoelectrocatalytic CO_(2)RR application field will also be featured from the perspectives of the(1)combination or synergy of multiple regulatory strategies,(2)revealing formation mechanism and realizing controllable synthesis,and(3)in situ multiscale investigation of activation pathways and uncovering the catalytic mechanisms.On the one hand,through the comparative analysis and mechanism explanation of the six major regulatory strategies,a multidimensional knowledge framework of the structure-activity relationship of Bi-based catalysts can be constructed for researchers,which not only deepens the atomic-level understanding of catalytic active sites,charge transport paths,and the adsorption behavior of intermediate products,but also provides theoretical guiding principles for the controllable design of new catalysts;on the other hand,the promising collaborative regulation strategies,controllable synthetic paths,and the in situ multiscale characterization techniques presented in this work provides a paradigm reference for shortening the research and development cycle of high-performance catalysts,conducive to facilitating the transition of photoelectrocatalytic CO_(2)RR technology from the laboratory routes to industrial application. 展开更多
关键词 Bismuth-based catalysts CO_(2)reduction reaction Regulation strategy Catalytic mechanism REVIEW
在线阅读 下载PDF
High performance CuO-CeO_2 catalysts for selective oxidation of CO in excess hydrogen:Effect of hydrothermal preparation conditions 被引量:2
3
作者 Pengfei Zhu Jing Li +3 位作者 Qinqin Huang Siming Yan Mei Liu Renxian Zhou 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第3期346-353,共8页
High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen were prepared by a hydrothermal method under different preparation conditions and evaluated for catalytic activities and selectiviti... High performance CuO-CeO2 catalysts for selective oxidation of CO in excess hydrogen were prepared by a hydrothermal method under different preparation conditions and evaluated for catalytic activities and selectivities. By changing the ^nCTAB/^nCe ratio and hydrothermal aging time, the catalytic activity of the CuO-CeO2 catalysts increased and the operating temperature window, in which the CO conversion was higher than 99%, was widened. XRD results showed no peaks of CuOx species and Cu-Ce-O solid solution were observed. On the other hand, Cu+ species in the CuO-CeO2 catalysts, which was associated with a strong interaction between copper oxide clusters and cerium oxide and could be favorable for improving the selective oxidation performance of CO in excess H2, were detected by H2-TPR and XPS techniques. 展开更多
关键词 selective oxidation CO excess hydrogen cuo-ceo2 catalyst HYDROTHERMAL preparation condition
在线阅读 下载PDF
Low CO content hydrogen production from oxidative steam reforming of ethanol over CuO-CeO_2 catalysts at low-temperature 被引量:1
4
作者 Xue Han Yunbo Yu +1 位作者 Hong He Jiaojiao Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期861-868,共8页
CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductive... CuO-CeO2 catalysts were prepared by a urea precipitation method for the oxidative steam reforming of ethanol at low-temperature.The catalytic performance was evaluated and the catalysts were characterized by inductively coupled plasma atomic emission spectroscopy,X-ray diffraction,temperature-programmed reduction,field emission scanning electron microscopy and thermo-gravimetric analysis.Over CuOCeO2 catalysts,H2 with low CO content was produced in the whole tested temperature range of 250–450 C.The non-noble metal catalyst 20CuCe showed higher H2production rate than 1%Rh/CeO2 catalyst at 300–400 C and the advantage was more obvious after 20 h testing at400 C.These results further confirmed that CuO-CeO2 catalysts may be suitable candidates for low temperature hydrogen production from ethanol. 展开更多
关键词 cuo-ceo2 catalyst hydrogen production oxidative steam reforming LOW-TEMPERATURE
在线阅读 下载PDF
Low-temperature CO oxidation over CuO-CeO_2/SiO_2 catalysts:Effect of CeO_2 content and carrier porosity 被引量:5
5
作者 Jingjie Luo Wei Chu +2 位作者 Huiyuan Xu Chengfa Jiang Tao Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2010年第4期355-361,共7页
The effects of CeO2 contents and silica carrier porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 cata-lysts in CO oxidation were investigated.The catalysts were characterized by N2 ad... The effects of CeO2 contents and silica carrier porosity with their pore diameters ranging from 5.2 nm to 12.5 nm of CuO-CeO2/SiO2 cata-lysts in CO oxidation were investigated.The catalysts were characterized by N2 adsorption/desorption at low temperature,X-ray diffraction (XRD),temperature-programmed reduction by H2 (H2-TPR),oxygen temperature programmed desorption (O2-TPD) and X-ray photoelectron spectroscopy (XPS).The results suggested that,the ceria content and the porosity of SiO2 carrier possessed great impacts on the structures and catalytic performances of CuO-CeO2/SiO2 catalysts.When appropriate content of CeO2 (Ce content 8 wt%) was added,the catalytic activity was greatly enhanced.In the catalyst supported on silica carrier with larger pore diameter,higher dispersion of CuO was observed,better agglomeration-resistant capacity was displayed and more lattice oxygen could be found,thus the CuO-CeO2 supported on Si-1 showed higher catalytic activity for low-temperature CO oxidation. 展开更多
关键词 cuo-ceo2 based catalyst silica carrier porosity carbon monoxide oxidation O2-TPD
在线阅读 下载PDF
Influence of preparation methods on CuO-CeO_2 catalysts in the preferential oxidation of CO in excess hydrogen 被引量:6
6
作者 Zhigang Liu Renxian Zhou Xiaoming Zheng 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第2期125-129,共5页
Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been inves... Influence of three different preparation methods, i.e. impregnation, coprecipitation, and inverse coprecipitation, on the preferential oxidation of CO in excess hydrogen (PROX) over CuO-CeO2 catalysts has been investigated and CuO-CeO2 catalysts are characterized using BET, XPS, XRD, UV Raman, and TPR techniques. The results show that the catalysts prepared by coprecipitation have smaller particle sizes, well-dispersed CuOx species, more oxygen vacancies, and are more active in the PROX than those prepared by the other methods. However. the inverse coprecipitation depresses the catalytic performance of CuO-CeO2 catalysts and causes the growth of CuO-CeO2 because of different pH value in the precipitation process. 展开更多
关键词 cuo-ceo2 preparation method preferential oxidation CO fuel cell
在线阅读 下载PDF
Exploring catalyst developments in heterogeneous CO_(2) hydrogenation to methanol and ethanol:A journey through reaction pathways 被引量:1
7
作者 Rasoul Salami Yimin Zeng +2 位作者 Xue Han Sohrab Rohani Ying Zheng 《Journal of Energy Chemistry》 2025年第2期345-384,I0008,共41页
The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation... The pursuit of alternative fuel generation technologies has gained momentum due to the diminishing reserves of fossil fuels and global warming from increased CO_(2)emission.Among the proposed methods,the hydrogenation of CO_(2)to produce marketable carbon-based products like methanol and ethanol is a practical approach that offers great potential to reduce CO_(2)emissions.Although significant volumes of methanol are currently produced from CO_(2),developing highly efficient and stable catalysts is crucial for further enhancing conversion and selectivity,thereby reducing process costs.An in-depth examination of the differences and similarities in the reaction pathways for methanol and ethanol production highlights the key factors that drive C-C coupling.Identifying these factors guides us toward developing more effective catalysts for ethanol synthesis.In this paper,we explore how different catalysts,through the production of various intermediates,can initiate the synthesis of methanol or ethanol.The catalytic mechanisms proposed by spectroscopic techniques and theoretical calculations,including operando X-ray methods,FTIR analysis,and DFT calculations,are summarized and presented.The following discussion explores the structural properties and composition of catalysts that influence C-C coupling and optimize the conversion rate of CO_(2)into ethanol.Lastly,the review examines recent catalysts employed for selective methanol and ethanol production,focusing on single-atom catalysts. 展开更多
关键词 CO_(2)hydrogenation METHANOL ETHANOL Catalytic mechanism Operando techniques Single atom catalyst Tandem catalyst
在线阅读 下载PDF
Selective catalytic reduction of NO with NH_3 over sol-gel-derived CuO-CeO_2-MnO_x/γ-Al_2O_3 catalysts 被引量:2
8
作者 赵清森 向军 +3 位作者 孙路石 石金明 苏胜 胡松 《Journal of Central South University》 SCIE EI CAS 2009年第3期513-519,共7页
Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. ... Granular CuO-CeO2-MnOx/γ-Al2O3 catalysts were synthesized by the sol-gel method. The performance of the CuO-CeO2-MnOx/γ-Al2O3 catalysts for the selective catalytic reduction (SCR) was studied in a fixed bed system. Preliminary tests were carried out to analyze the behavior of NH3 and NO over catalyst in the presence of oxygen. The optimum temperature range for SCR over the CuO-CeO2-MnOx/γ-Al2O3 catalysts is 300-400 ℃ . The catalysts maintain nearly 100% NO conversion at 350 ℃. The NH3 oxidation experiments show that both NO and N2O are produced gradually with the increase of temperature. The catalysts in this experiment have a stronger oxidation property on NH3, which improves the denitrification activity at low temperature. The over-oxidation of NH3 at high temperature is the main cause leading to a decrease in the NO conversion. The NH3 and NO desorption experiments show that NH3 and NO can be adsorbed on CuO-CeO2-MnOx/γ-Al2O3 granular catalysts. The transient response of NH3 and NO indicates that the SCR reaction proceeds in accordance with the Eley-Rideal mechanism. The adsorbed NO has little influence on the denitrification activity in SCR process. 展开更多
关键词 sol-gel method cuo-ceo2-MnOx/γ-Al2O3 NH3 NO CONVERSION selective catalytic reduction (SCR)
在线阅读 下载PDF
Preferential Oxidation of CO in Excess Hydrogen over CuO-CeO_2 Catalyst Prepared by Chelating Method 被引量:1
9
作者 Zhigang Liu Renxian Zhou Xiaoming Zheng 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第2期167-172,共6页
The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. Th... The CuO-CeO2 catalyst prepared by chelating method has a superior catalytic performance for the preferential oxidation of CO in rich hydrogen, compared with the CuO-CeO2 catalyst prepared by coprecipitation method. The CO conversions over these catalysts, at 120 ℃ and 120000 ml/(g-h) in the absence of CO2 and H2O, are 99.6% and 88.6%, respectively, and the selectivity of O2 over these catalysts is very close (i.e. 51.3% and 55.8%, respectively). The influence of certain factors such as hydrogen concentration, carbon monoxide concentration, H2O, O2/CO ratios, and space velocity on the catalytic performance of CuO-CeO2 catalyst prepared by chelating method is also studied. The results show that the addition of hydrogen and H2O has a negative effect on the catalytic performance of CuO-CeO2 catalyst, however, the variation of space velocity and the O2/CO ratio causes a comparatively slight influence. 展开更多
关键词 cuo-ceo2 chelating method preferential oxidation CO HYDROGEN
在线阅读 下载PDF
Influence of reduction energy match among CuO species in CuO-CeO_2 catalysts on the catalytic performance for CO preferential oxidation in excess hydrogen 被引量:1
10
作者 Zhigang Liu Yunlong Xie +2 位作者 Wensheng Li Renxian Zhou Xiaoming Zheng 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期111-116,共6页
In the present study, we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation (CO PROX) in excess hydrog... In the present study, we have investigated the reducibility of CuO species on CuO-CeO2 catalysts and the influence of CuO species on the catalytic performance for CO preferential oxidation (CO PROX) in excess hydrogen. It is revealed that the smaller the difference of reduction temperature (denoted as ?T) for two adjacent CuO species is, the higher the catalytic activity of CuO-CeO2 for the PROX in excess hydrogen may be obtained. It means that if the reduction energy of Cu0-Cu2+ pairs matched better, the reduction-oxidation recycle of Cu0-Cu2+ pairs would go on more easily, then the transferring energy of Cu0-Cu2+ pairs would be lesser. Therefore, the CuO-CeO2 catalysts will be largely improved in their catalytic performance if the different CuO species on the catalysts have matched the reduction energy, which would allows them to cooperate effectively. 展开更多
关键词 energy match cooperative effect cuo-ceo2 preferential oxidation CO
在线阅读 下载PDF
Research progress on metal-support interactions over Ni-based catalysts for CH_(4)-CO_(2)reforming reaction
11
作者 SUN Kai JIANG Jianfei +4 位作者 LIU Zixuan GENG Shiqi LIU Zhenmin YANG Jiaqian LI Shasha 《燃料化学学报(中英文)》 北大核心 2025年第4期434-451,共18页
With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Ni... With ongoing global warming and increasing energy demands,the CH_(4)-CO_(2)reforming reaction(dry reforming of methane,DRM)has garnered significant attention as a promising carbon capture and utilization technology.Nickel-based catalysts are renowned for their outstanding activity and selectivity in this process.The impact of metal-support interaction(MSI),on Ni-based catalyst performance has been extensively researched and debated recently.This paper reviews the recent research progress of MSI on Ni-based catalysts and their characterization and modulation strategies in catalytic reactions.From the perspective of MSI,the effects of different carriers(metal oxides,carbon materials and molecular sieves,etc.)are introduced on the dispersion and surface structure of Ni active metal particles,and the effect of MSI on the activity and stability of DRM reactions on Ni-based catalysts is discussed in detail.Future research should focus on better understanding and controlling MSI to improve the performance and durability of nickel-based catalysts in CH_(4)-CO_(2)reforming,advancing cleaner energy technologies. 展开更多
关键词 CO_(2)utilization CH_(4)-CO_(2)reforming Ni-based catalysts metal-support interactions supports
在线阅读 下载PDF
High temperature shock synthesis of Ni-N-C single-atom catalysts for efficient CO_(2) electroreduction to CO
12
作者 PANG Peiqi XU Changjian +5 位作者 LI Ruizhu GAO Na DU Xianlong LI Tao WANG Jianqiang XIAO Guoping 《燃料化学学报(中英文)》 北大核心 2025年第8期1162-1172,共11页
Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have re... Electrocatalytic reduction of carbon dioxide(CO_(2))to carbon monoxide(CO)is an effective strategy to achieve carbon neutrality.High selective and low-cost catalysts for the electrocatalytic reduction of CO_(2)have received increasing attention.In contrast to the conventional tube furnace method,the high-temperature shock(HTS)method enables ultra-fast thermal processing,superior atomic efficiency,and a streamlined synthesis protocol,offering a simplified method for the preparation of high-performance single-atom catalysts(SACs).The reports have shown that nickel-based SACs can be synthesized quickly and conveniently using the HTS method,making their application in CO_(2)reduction reactions(CO_(2)RR)a viable and promising avenue for further exploration.In this study,the effect of heating temperature,metal loading and different nitrogen(N)sources on the catalyst morphology,coordination environment and electrocatalytic performance were investigated.Under optimal conditions,0.05Ni-DCD-C-1050 showed excellent performance in reducing CO_(2)to CO,with CO selectivity close to 100%(−0.7 to−1.0 V vs RHE)and current density as high as 130 mA/cm^(2)(−1.1 V vs RHE)in a flow cell under alkaline environment. 展开更多
关键词 CO_(2)electrocatalytic reduction high temperature shock method single atom catalysts coordination
在线阅读 下载PDF
Peroxymonosulfate Activation by CoFe_(2)O_(4)/MgAl-LDH Catalyst for the Boosted Degradation of Antibiotic
13
作者 LI Jianjun CHEN Fangming +5 位作者 ZHANG Lili WANG Lei ZHANG Liting CHEN Huiwen XUE Changguo XU Liangji 《无机材料学报》 北大核心 2025年第4期440-448,I0022-I0024,共12页
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d... Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation. 展开更多
关键词 magnetic composite catalyst PEROXYMONOSULFATE CoFe_(2)O_(4)/MgAl-LDH advanced oxidation process antibiotic
在线阅读 下载PDF
Cu-ZnO催化CO_(2)加氢制甲醇反应构效关系研究进展
14
作者 魏新煜 苏暐光 +3 位作者 白永辉 宋旭东 吕鹏 于广锁 《石油学报(石油加工)》 北大核心 2026年第1期107-117,共11页
CO_(2)转化为甲醇可缓解温室效应并满足能源需求,而高效转化的关键在于催化剂设计。Cu-ZnO催化剂具有高转化率、良好甲醇选择性、低成本和易调控组成等优点,成为CO_(2)加氢制甲醇的主流催化体系。从甲酸盐路径和逆水煤气变换路径2种反... CO_(2)转化为甲醇可缓解温室效应并满足能源需求,而高效转化的关键在于催化剂设计。Cu-ZnO催化剂具有高转化率、良好甲醇选择性、低成本和易调控组成等优点,成为CO_(2)加氢制甲醇的主流催化体系。从甲酸盐路径和逆水煤气变换路径2种反应路径综述了不同Cu-ZnO催化剂上CO_(2)加氢制甲醇的研究进展,并对加氢反应中所涉及的活性位点及构效关系,如金属价态、界面相互作用、尺寸效应与限域效应等方面进行分析探讨。总结了近年来利用金属有机框架、分子筛、层状双金属氢氧化物和类水滑石化合物等材料制备的新型结构Cu-ZnO、Cu-ZnO-M_(x)O_(y)复合三元催化剂的甲醇生成活性。Cu基催化剂的活性和稳定性仍需提升,且反应中的关键中间体尚不明确,未来Cu-ZnO催化剂的研究应聚焦于原位分析与机器学习相结合,优化催化剂尺寸、形状及载体性能,整合酸碱与氧化还原功能,明确CO_(2)转化机理并提高催化效率。 展开更多
关键词 Cu-ZnO催化剂 CO_(2)加氢制甲醇 反应机理 活性位点 构效关系
在线阅读 下载PDF
100%Conversion of CO_(2)-CH_(4)with Non‑Precious Co@ZnO Catalyst in Hot Water
15
作者 Yang Yang Xu Liu +1 位作者 Daoping He Fangming Jin 《Nano-Micro Letters》 2025年第9期251-264,共14页
The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic syste... The combination of solar energy and natural hydro-thermal systems will innovate the chemistry ofCO_(2)hydrogenation;however,the approach remains challenging due to the lack of robust and cost-effective catalytic system.Here,Zn which can be recycled with solar energy-induced approach was chosen as the reductant and Co as catalyst to achieve robust hydrothermalCO_(2)methanation.Nanosheets of honeycomb ZnO were grown in situ on the Co surface,resulting in a new motif(Co@ZnO catalyst)that inhibits Co deacti-vation through ZnO-assistedCoOx reduction.The stabilized Co and interaction between Co and ZnO functioned collaboratively toward the full conversion ofCO_(2)–CH_(4).In situ hydrothermal infrared spectros-copy confirmed the formation of formic acid as an intermediate,thereby avoiding CO formation and unwanted side reaction pathways.This study presents a straightforward one-step process for both highly efficientCO_(2)conversion and catalyst synthesis,paving the way for solar-drivenCO_(2)methanation. 展开更多
关键词 CO_(2)methanation Cobalt catalyst HYDROTHERMAL Formic acid Co@ZnO catalyst
在线阅读 下载PDF
Size-dependent strong metal-support interaction modulation of Pt/CoFe_(2)O_(4) catalysts
16
作者 Yangyang Li Jingyi Yang +1 位作者 Botao Qiao Tao Zhang 《Chinese Journal of Catalysis》 2025年第2期292-302,共11页
Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance... Supported metal catalysts are the backbone of heterogeneous catalysis,playing a crucial role in the modern chemical industry.Metal-support interactions(MSIs)are known important in determining the catalytic performance of supported metal catalysts.This is particularly true for single-atom catalysts(SACs)and pseudo-single-atom catalysts(pseudo-SACs),where all metal atoms are dispersed on,and interact directly with the support.Consequently,the MSI of SACs and pseudo-SACs are theoretically more sensitive to modulation compared to that of traditional nanoparticle catalysts.In this work,we experimentally demonstrated this hypothesis by an observed size-dependent MSI modulation.We fabricated CoFe_(2)O_(4) supported Pt pseudo-SACs and nanoparticle catalysts,followed by a straightforward water treatment process.It was found that the covalent strong metal-support interaction(CMSI)in pseudo-SACs can be weakened,leading to a significant activity improvement in methane combustion reaction.This finding aligns with our recent observation of CoFe_(2)O_(4) supported Pt SACs.By contrast,the MSI in Pt nanoparticle catalyst was barely affected by the water treatment,giving rise to almost unchanged catalytic performance.This work highlights the critical role of metal size in determining the MSI modulation,offering a novel strategy for tuning the catalytic performance of SACs and pseudo-SACs by fine-tuning their MSIs. 展开更多
关键词 Strongmetal-support interaction Single-atom catalyst Pseudo-single-atom catalyst Size dependence Pt/CoFe_(2)O_(4)catalyst
在线阅读 下载PDF
Enhancing CO_(2) reduction with formamide-Ni@TiO_(2) catalyst
17
作者 Wen Zhong Wenjing Liu Jingjing Du 《Journal of Environmental Sciences》 2025年第7期229-236,共8页
Formamide condensation with Ni can generate the N–C structure,widely recognized as an efficient catalyst for electrocatalytic CO_(2) reduction reaction(CO_(2)RR).To improve the utilization efficiency of Ni atoms,we i... Formamide condensation with Ni can generate the N–C structure,widely recognized as an efficient catalyst for electrocatalytic CO_(2) reduction reaction(CO_(2)RR).To improve the utilization efficiency of Ni atoms,we introduced metal oxides as substrates to modulate the growth of a formamide-Ni(FA-Ni)condensate.FA-Ni@TiO_(2) demonstrated 2.8 times higher partial CO current density and Ni turnover frequency than FA-Ni,which were also higher than those of other FA-Ni@metal oxides,including ZrO_(2),Al_(2)O_(3),Fe_(2)O_(3),and ZnO.The improved performance of CO_(2)RR can be attributed to the Ni content exposed on FA-Ni@TiO_(2) being twice that of the raw FA-Ni condensate.The Fourier transform infrared results suggested that formamide was adsorbed on TiO_(2) via the-CHO group,exposing-NH_(2) for potential interaction with Ni.As a result,Ni atoms were predispersed on the TiO_(2) surface.By contrast,the dispersion of Ni atoms was not enhanced by other metal oxides,such as Al_(2)O_(3),Fe_(2)O_(3),and ZnO,owing to the robust acidity of their surface sites.These metal oxides adsorbed formamide via-NH_(2),leading to the absence of extra-NH_(2) available for binding to Ni atoms.This study provides new insights into the development of appropriate substrates for single-atom catalysts. 展开更多
关键词 Metal oxides TiO_(2) Single-atom catalysts FORMAMIDE CONDENSATION
原文传递
The Development of Zeolite-Based Catalysts for CO_(2) Hydrogenation to Dimethyl Ether
18
作者 Zhongyi Xue Wenfu Yan 《Carbon and Hydrogen》 2025年第1期43-51,共9页
The use of fossil fuels significantly contributes to excess CO_(2) emissions.Catalytic hydrogenation of CO_(2) to dimethyl ether(DME)is an effective method for CO_(2) recycling,offering both environmental and economic... The use of fossil fuels significantly contributes to excess CO_(2) emissions.Catalytic hydrogenation of CO_(2) to dimethyl ether(DME)is an effective method for CO_(2) recycling,offering both environmental and economic benefits.Zeolites,known for their efficiency as solid catalysts,are widely utilized in the chemical industries.Bifunctional catalysts based on zeolites have gained attention for their applications in CO_(2) hydrogenation to DME.This review discusses key factors affecting the catalytic performance of zeolites,including topologies,Si/Al ratio,crystal size,and the proximity of metallic species to the zeolite catalysts.Although bifunctional catalytic systems enhance the conversion of CO_(2) to DME,they also lead to high CO selectivity at elevated temperatures,which can limit both DME yield and selectivity.We present recent advancements in the development of bifunctional catalysts for the direct hydrogenation of CO_(2) to DME,providing insights for designing optimized catalysts for tandem reaction systems. 展开更多
关键词 catalystS CO_(2)hydrogenation dimethyl ether ZEOLITE
在线阅读 下载PDF
Enhancing hydrogen storage performance of MgH_(2)with hollow Bi_(2)Ti_(2)O_(7)catalyst:Synergistic effects of Bi_(2)Mg_(3)alloy phase and Ti polyvalency
19
作者 Xiaoying Yang Xinqiang Wang +7 位作者 Ruijie Liu Yanxia Liu Zhenglong Li Wengang Cui Fulai Qi Yaxiong Yang Jian Chen Hongge Pan 《Journal of Magnesium and Alloys》 2025年第12期6154-6166,共13页
The role of catalysts in enhancing the hydrogen storage kinetics of the Mg/MgH_(2)system is pivotal.However,the exploration of efficient catalysts and the underlying principles of their design remain both a prominent ... The role of catalysts in enhancing the hydrogen storage kinetics of the Mg/MgH_(2)system is pivotal.However,the exploration of efficient catalysts and the underlying principles of their design remain both a prominent focus and a significant challenge in current research.In this study,we present a bimetallic oxide of Bi_(2)Ti_(2)O_(7)hollow sphere as a highly effective catalyst for MgH_(2).As a result,the Bi_(2)Ti_(2)O_(7)-catalyzed Mg/MgH_(2)system lowers the hydrogen desorption initiation temperature to 194.3℃,reduces the peak desorption temperature to 245.6℃,decreases the dehydrogenation activation energy to 82.14 kJ·mol^(−1),and can absorb 5.4 wt.%of hydrogen within 60 s at 200℃,demonstrating outstanding hydrogen ab/desorption kinetics,compared to pure MgH_(2).Additionally,it can maintain a high hydrogen capacity of 5.2 wt.%,even after 50 dehydrogenation cycles,showing good cycle stability.The characterization results show that the high-valent Bi and Ti in Bi_(2)Ti_(2)O_(7)are reduced to their low-valent or even zero-valent metallic states during the dehydrogenation and hydrogenation process,thus establishing an in-situ multivalent and multi-element catalytic environment.Density functional theory calculations further reveal that the synergistic effects between Bi and Ti in the Bi-Ti mixed oxide facilitate the cleavage of Mg-H bonds and lower the kinetic barrier for the dissociation of hydrogen molecules,thereby substantially enhancing the kinetics of the Mg/MgH_(2)system.This study presents a strategic method for developing efficient catalysts for hydrogen storage materials by harnessing the synergistic effects of metal elements. 展开更多
关键词 Hydrogen storage MgH_(2) Bimetallic oxide catalystS Synergistic effects
在线阅读 下载PDF
Constant-potential simulation of electrocatalytic N_(2) reduction over atomic metal-N-graphene catalysts
20
作者 Sanmei Wang Yong Zhou +3 位作者 Hengxin Fang Chunyang Nie Chang Q Sun Biao Wang 《Chinese Chemical Letters》 2025年第3期439-443,共5页
Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required... Charge-neutral method(CNM)is extensively used in investigating the performance of catalysts and the mechanism of N_(2)electrochemical reduction(NRR).However,disparities remain between the predicted potentials required for NRR by the CNM methods and those observed experimentally,as the CNM method neglects the charge effect from the electrode potential.To address this issue,we employed the constant electrode potential(CEP)method to screen atomic transition metal-N-graphene(M_(1)/N-graphene)as NRR electrocatalysts and systematically investigated the underlying catalytic mechanism.Among eight types of M_(1)/N-graphene(M_(1)=Mo,W,Fe,Re,Ni,Co,V,Cr),W_(1)/N-graphene emerges as the most promising NRR electrocatalyst with a limiting potential as low as−0.13 V.Additionally,the W_(1)/N-graphene system consistently maintains a positive charge during the reaction due to its Fermi level being higher than that of the electrode.These results better match with the actual circumstances compared to those calculated by conventional CNM method.Thus,our work not only develops a promising electrocatalyst for NRR but also deepens the understanding of the intrinsic electrocatalytic mechanism. 展开更多
关键词 N_(2) reduction Single-atom catalysts Constant potential GRAPHENE DFT
原文传递
上一页 1 2 186 下一页 到第
使用帮助 返回顶部