The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface...The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.展开更多
Transference of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst prepared by an impregnation method were characterized by in-situ XRD, Raman spectroscopy and H2-TPR techniques. For the cataly...Transference of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst prepared by an impregnation method were characterized by in-situ XRD, Raman spectroscopy and H2-TPR techniques. For the catalyst calcined at 300℃, two kinds of CuO species coexist on the surface, that is, highly dispersed and bulk CuO crystalline phase. Four kinds of CuO species are present for the catalyst calcined at 600 ℃, : (1) highly dispersed CuO, (2) bulk CuO on the surface, (3) bulk CuO in the internal layer of CeO2, and (4) CuAl2O4 formed from CuO-Al2O3 interaction. For the catalyst calcined at 800 ℃,C, besides very little highly dispersed and bulk CuO on the surface, most of the CuO has transferred into the internal layer of CeO2 and the mass of CuAl2O4 are increased. At 900 ℃,, all of CuO has diffused into the internal layer of CeO2 and formed CuAl2O4. The results show that the distribution of CuO species in the catalysts depends on the calcination temperature; the different CuO species can be effectively confirmed by in-situ XRD, Raman spectroscopy and H2-TPR techniques.展开更多
Ce-Zr-Al-Nd2O3 (CZAN) support materials were prepared by co-precipitation and impregnation methods, respectively. They were characterized by X-ray diffTaction (XRD), low temperature nitrogen adsorption-desorption,...Ce-Zr-Al-Nd2O3 (CZAN) support materials were prepared by co-precipitation and impregnation methods, respectively. They were characterized by X-ray diffTaction (XRD), low temperature nitrogen adsorption-desorption, oxygen pulsing technique, H2-temperamre programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The Pd-only three-way catalysts (Pd-TWC) supported on these materials were prepared by incipient wetness method and studied by activity tests. The results demonstrated that the CZAN supports obtained by the two methods showed better structural, textural and redox properties than the CZA without Nd2O3, and the addition of Nd203 improved the catalytic activity of TWC. Especially, the CZAN-i support prepared by impregnation method had better thermal stability and redox property. Meanwhile, the Pd/CZAN-i catalyst exhibited the best catalytic performance. XPS measurements indicated that the Nd-modified samples possessed more Ce3+ and oxygen vacancies on the surface of samples, which led to a better redox property. The excellent redox property of support materials helped to improve the catalytic activity of TWC.展开更多
γ-A12O3-supported CeO2 catalysts were pre- pared by microemulsion and impregnation methods and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. At the same time, the des...γ-A12O3-supported CeO2 catalysts were pre- pared by microemulsion and impregnation methods and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. At the same time, the desulfurization activity of catalysts was investigated. The results show that nanoscale active substances and a high desulfurization effect are achieved by microemulsion, exhibiting a significant dominance compared with traditional impregnation method. The optimal preparation condition is temperature of 30 ℃ and ratio of [H20]/[surface active agent] of 7 with slow demulsification. The activated catalysts still keep high and stable desulfurization activity during a wide temperature range of 450-600 ℃. Among a series of prepared catalysts, the desulfurization rate of 6CeOz/γ-A1203 is the highest, reaching up to 80 % when temperature is higher than 550℃. The catalytic reduction mechanism of SO2 over nano-CeOz/γ-A1203 follows redox mechanism.展开更多
We first present preparation of MnOx–CeO_2–Al_2O_3 catalysts with varying Mn contents through a self-propagating high-temperature synthesis(SHS) method, and studied the application of these catalysts to the selectiv...We first present preparation of MnOx–CeO_2–Al_2O_3 catalysts with varying Mn contents through a self-propagating high-temperature synthesis(SHS) method, and studied the application of these catalysts to the selective catalytic reduction of NOxwith NH3(NH_3-SCR).Using the catalyst with 18 wt.% Mn(18 MnCe1Al2), 100% NO conversion was achieved at 200°C and a gas hourly space velocity of 15384 hr-1, and the high-efficiency SCR temperature window, where NO conversion is greater than 90%, was widened to a temperature range of 150–300°C. 18 MnCe1Al2 showed great resistance to SO_2(100 ppm)and H_2O(5%) at 200°C. The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller(BET) analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and H_2 temperature programmed reduction. The characterization results showed that the surface atomic concentration of Mn increased with increasing Mn content, which led to synergism between Mn and Ce and improved the activity in the SCR reaction. 18 MnCe1Al2 has an extensive pore structure,with a BET surface area of approximately 135.4 m^2/g, a pore volume of approximately 0.16 cm^3/g, and an average pore diameter of approximately 4.6 nm. The SCR reaction on 18 MnCe1Al2 mainly followed the Eley-Rideal mechanism. The performances of the MnOx–CeO_2–Al_2O_3 catalysts were good, and because of the simplicity of the preparation process,the SHS method is applicable to their industrial-scale manufacture.展开更多
Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and N...Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.展开更多
CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that...CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.展开更多
The Pd-only catalysts for motorcycle were prepared by impregnating CeO2-ZrO2-Al2O3 and CeO2-ZrO2+Al2O3 with PdCl2 aqueous solution and characterized by X-ray diffraction (XRD), oxygen storage capacity (OSC) and H2-tem...The Pd-only catalysts for motorcycle were prepared by impregnating CeO2-ZrO2-Al2O3 and CeO2-ZrO2+Al2O3 with PdCl2 aqueous solution and characterized by X-ray diffraction (XRD), oxygen storage capacity (OSC) and H2-temperature-programmed reduction (H2-TPR) methods. The XRD result indicated that the CeO2-ZrO2-Al2O3 compound prepared by co-precipitation formed a single solid solution and had good thermal stability, and Pd phase was not observed in all catalysts. The TPR results showed that the reduction temperature of Pd/CeO2-ZrO2-Al2O3 catalyst was lower than that of Pd/CeO2-ZrO2+Al2O3 catalyst whether they were fresh or aged catalysts. The Pd/CeO2-ZrO2-Al2O3 exhibited high three-way catalytic activity at low temperature, high thermal stability, and wide working window, suggesting a great potential for applications.展开更多
In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation me...In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.展开更多
文摘The catalytic activity measurement for the NO+CO reaction over CuO/CeO\-2/\%γ\%\|Al\-2O\-3 catalysts at a low\|temperature(200 ℃) shows that the activity is strongly related to ceria loading amount, and both surface dispersed ceria species and crystalline CeO\-2 shows a significant enhancement on the activity. The effect of ceria species is contributed to their promoting the reduction of copper oxide species.
文摘Transference of CuO species and thermal solid-solid interaction in CuO/CeO2-Al2O3 catalyst prepared by an impregnation method were characterized by in-situ XRD, Raman spectroscopy and H2-TPR techniques. For the catalyst calcined at 300℃, two kinds of CuO species coexist on the surface, that is, highly dispersed and bulk CuO crystalline phase. Four kinds of CuO species are present for the catalyst calcined at 600 ℃, : (1) highly dispersed CuO, (2) bulk CuO on the surface, (3) bulk CuO in the internal layer of CeO2, and (4) CuAl2O4 formed from CuO-Al2O3 interaction. For the catalyst calcined at 800 ℃,C, besides very little highly dispersed and bulk CuO on the surface, most of the CuO has transferred into the internal layer of CeO2 and the mass of CuAl2O4 are increased. At 900 ℃,, all of CuO has diffused into the internal layer of CeO2 and formed CuAl2O4. The results show that the distribution of CuO species in the catalysts depends on the calcination temperature; the different CuO species can be effectively confirmed by in-situ XRD, Raman spectroscopy and H2-TPR techniques.
基金Project supported by National Natural Science Foundation of China (20773090, 20803049)the Specialized Research Fund for the Doctoral Program of Higher Education (20070610026, 200806100009)
文摘Ce-Zr-Al-Nd2O3 (CZAN) support materials were prepared by co-precipitation and impregnation methods, respectively. They were characterized by X-ray diffTaction (XRD), low temperature nitrogen adsorption-desorption, oxygen pulsing technique, H2-temperamre programmed reduction (H2-TPR) and X-ray photoelectron spectroscopy (XPS). The Pd-only three-way catalysts (Pd-TWC) supported on these materials were prepared by incipient wetness method and studied by activity tests. The results demonstrated that the CZAN supports obtained by the two methods showed better structural, textural and redox properties than the CZA without Nd2O3, and the addition of Nd203 improved the catalytic activity of TWC. Especially, the CZAN-i support prepared by impregnation method had better thermal stability and redox property. Meanwhile, the Pd/CZAN-i catalyst exhibited the best catalytic performance. XPS measurements indicated that the Nd-modified samples possessed more Ce3+ and oxygen vacancies on the surface of samples, which led to a better redox property. The excellent redox property of support materials helped to improve the catalytic activity of TWC.
基金financially supported by the Natural Science Foundation of Hubei Province, China(No. 2009CDB246)the Applied Basic Research Project of Wuhan City (No. 2015060101010068)
文摘γ-A12O3-supported CeO2 catalysts were pre- pared by microemulsion and impregnation methods and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques. At the same time, the desulfurization activity of catalysts was investigated. The results show that nanoscale active substances and a high desulfurization effect are achieved by microemulsion, exhibiting a significant dominance compared with traditional impregnation method. The optimal preparation condition is temperature of 30 ℃ and ratio of [H20]/[surface active agent] of 7 with slow demulsification. The activated catalysts still keep high and stable desulfurization activity during a wide temperature range of 450-600 ℃. Among a series of prepared catalysts, the desulfurization rate of 6CeOz/γ-A1203 is the highest, reaching up to 80 % when temperature is higher than 550℃. The catalytic reduction mechanism of SO2 over nano-CeOz/γ-A1203 follows redox mechanism.
基金supported by the National High Technology Research and Development Program of China (863 program) (No.2015AA03A401)the Program for Changjiang Scholars and Innovative Research Team in University (No.IRT_15R46)the program of Science and Technology Innovation Team in Bingtuan (No.2015BD003)
文摘We first present preparation of MnOx–CeO_2–Al_2O_3 catalysts with varying Mn contents through a self-propagating high-temperature synthesis(SHS) method, and studied the application of these catalysts to the selective catalytic reduction of NOxwith NH3(NH_3-SCR).Using the catalyst with 18 wt.% Mn(18 MnCe1Al2), 100% NO conversion was achieved at 200°C and a gas hourly space velocity of 15384 hr-1, and the high-efficiency SCR temperature window, where NO conversion is greater than 90%, was widened to a temperature range of 150–300°C. 18 MnCe1Al2 showed great resistance to SO_2(100 ppm)and H_2O(5%) at 200°C. The catalysts were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller(BET) analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and H_2 temperature programmed reduction. The characterization results showed that the surface atomic concentration of Mn increased with increasing Mn content, which led to synergism between Mn and Ce and improved the activity in the SCR reaction. 18 MnCe1Al2 has an extensive pore structure,with a BET surface area of approximately 135.4 m^2/g, a pore volume of approximately 0.16 cm^3/g, and an average pore diameter of approximately 4.6 nm. The SCR reaction on 18 MnCe1Al2 mainly followed the Eley-Rideal mechanism. The performances of the MnOx–CeO_2–Al_2O_3 catalysts were good, and because of the simplicity of the preparation process,the SHS method is applicable to their industrial-scale manufacture.
基金supported by the National Natural Science Foundation of China (No. 20773090, 20803049)the National High Technology Researchand Development Program of China (863 Program, No. 2006AA06Z347)the Specialized Research Fund for the Doctoral Program of Higher Education(20070610026)
文摘Composite supports CeO2-ZrO2-Al2O3(CZA) and CeO2-ZrO2-Al2O3-La2O3(CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperatnre-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.
文摘CeO2-based oxygen materials were prepared with co-precipitation method and characterized via Brunauer-Emmet Teller(BET)method,X-ray diffraction(XRD)and temperature-programmed reduction(H2-TPR).This paper revealed that three CeO2-based oxygen storage materials are all forming homogeneous solid solution.Among the samples,CeO2-ZrO2-Al2O3(CZA)has the best textural properties and excellent thermal stability.The specific surface area and pore volume of aged CZA are 90 m2/g and 0.29 mL/g.We proposed a viewpoint:Al3+ might insert among the interspace of fluorite structure or highly dispersal in solid solutions.
基金Project supported by the National High Technology Research and Development Program of China (863 Program,2006AA06Z347)the Specialized Research Fund for the Doctoral Program of Higher Education (20070610026)
文摘The Pd-only catalysts for motorcycle were prepared by impregnating CeO2-ZrO2-Al2O3 and CeO2-ZrO2+Al2O3 with PdCl2 aqueous solution and characterized by X-ray diffraction (XRD), oxygen storage capacity (OSC) and H2-temperature-programmed reduction (H2-TPR) methods. The XRD result indicated that the CeO2-ZrO2-Al2O3 compound prepared by co-precipitation formed a single solid solution and had good thermal stability, and Pd phase was not observed in all catalysts. The TPR results showed that the reduction temperature of Pd/CeO2-ZrO2-Al2O3 catalyst was lower than that of Pd/CeO2-ZrO2+Al2O3 catalyst whether they were fresh or aged catalysts. The Pd/CeO2-ZrO2-Al2O3 exhibited high three-way catalytic activity at low temperature, high thermal stability, and wide working window, suggesting a great potential for applications.
基金The National Basic Research Program (973) of China (No. 2004CB418505) the Foundation for Excellent Youth of HeilongjiangProvince
文摘In order to develop a catalyst with high activity for catalytic wet oxidation (CWO) process at room temperature and atmospheric pressure, Fe2O3-CeO2-TiO2/γ-Al2O3 catalyst was prepared by consecutive impregnation method and the prepared parameters were optimized. The structure of the catalyst was characterized by BET, XRF, SEM and XPS technologies, and the actual wastewater was used to investigate the catalytic activity of Fe2O3-CeO2-TiO2/γ-Al2O3 in CWO process. The experimental results showed that the prepared catalyst exhibited good catalytic activity when the doping amount of Ti was 1.0 wt% (the weight ratio of Ti to carriers), and the middle product, Fe2O3-CeO2-TiO2/γ-Al2O3, was calcined in 450℃ for 2 h. The CWO experiment for treating actual dye wastewater indicated that the COD, color and TOC of actual wastewater were decreased by 62.23%, 50.12% and 41.26% in 3 h, respectively, and the ratio of BOD5/COD was increased from 0.19 to 0.30.