Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that P...Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that PAn was able to sensitize TiO2 efficiently and the composite photocatalyst could be activated by absorbing both the ultraviolet and visible light (λ: 190 ~ 800 nm), whereas pure TiO2 absorbed ultraviolet light only (λ 〈 380 nm). Under the irradiation of natural light, MB could be degraded more efficiently on the TiO2/PAn composites than on the TiO2 Furthermore, it could be easily separated from the solution by simple sedimentation.展开更多
TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocataly...TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.展开更多
Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to de...Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.展开更多
A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sens...A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sensitive to pH change. Diffuse reflectance spectra (DRS) revealed that the electronic change in TiO2 did not occur by the addition of AC. Results of SEM and XRD suggested that better TiO2 distribution can be achieved when optimal AC content was adopted. The performance of the prepared TiO2/5AC catalyst revealed great practical potential in wastewater treatment field.展开更多
AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher ...AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process.展开更多
Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that o...Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.展开更多
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was emplo...A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was employed as an organic binder to unite Bi2O3 and TiO2 nanoparticles. The SEM, TEM, XRD and diffuse reflectance spectra were utilized to characterize the prepared Bi2O3/TiO2 nanoheterojunction. The nanocomposite exhibited unusual high photocatalytic activity in decomposing 2-propanol in gas phase and phenol in aqueous phase and, evolution of CO2 under visible light irradiation while the end members exhibited low photocatalytic activity. The composite was optimized to 5 mol% Bi2O3/TiO2. The remarkable high photocatalytic efficiency originates from the unique relative energy band position of Bi2O3 and TiO2 as well as the absorption of visible light by Bi2O3.展开更多
A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation ...A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation method and post-thermal process. Photocatalyticactivity was evaluated by the degradation of Rhodamine B under the visible light irradiation.Effects of the contents of In203 nanoparticles on the optical property and photocatalytic activity of In203/Bi24O31Br10 composite were also investigated. Compared with neat In203 and Bi24O31Brlomaterials, 15In203/Bi24O31Br10 composite exhibits the best photocatalytic activity owing to theefficient separation of photogenerated electron and hole pairs, which is evidenced byphotoluminence spectra. More than 95% of Rhodamine B solution can be degraded by15In203/Bi24O31Brlo sample in 30 min.展开更多
The long-standing popularity of semiconductor photocatalysis,due to its great potential in a variety of applications,has resulted in the creation of numerous semiconductor photocatalysts,and it stimulated the developm...The long-standing popularity of semiconductor photocatalysis,due to its great potential in a variety of applications,has resulted in the creation of numerous semiconductor photocatalysts,and it stimulated the development of various characterization methods.In this study,Fe_(2)O_(3)/Bi_(2)WO_(6)composite with a flower-like microsphere and hierarchical structure was synthesized with the facile hydrothermal-impregnation method without any surfactants.X-ray diffraction(XRD),scanning electron microscopy(SEM),ultravioletevisible(UV-Vis)diffuse reflectance spectroscopy,and photoluminescence spectroscopy were used to characterize the structures of the samples.The specific surface area was estimated with the Brunauer-Emmett-Teller(BET)method,and pore size distribution was determined using the Barrett-Joyner-Halenda(BJH)method.The synthesized Fe_(2)O_(3)/Bi_(2)WO_(6)composite had an average diameter of approximately 4 nm,with smaller specific surface area and larger pore diameter than those of pristine Bi_(2)WO_(6).The results of XRD and SEM analyses confirmed that the composite was composed of Fe_(2)O_(3)and Bi_(2)WO_(6).The absorption edge of Bi_(2)WO_(6)was at a wavelength of 460 nm.By contrast,the absorption edge of Fe_(2)O_(3)/Bi_(2)WO_(6)to visible light was redshifted to 520 nm,with narrower bandgap width and stronger visible light response.It was also found that the main active substances in the degradation of microcystin-LR(MC-LR)were hydroxyl radicals(·OH)and electron holes(h^(+)).Consequently,the results further showed that the heterojunction between Fe_(2)O_(3)and Bi_(2)WO_(6)can improve the charge transfer rate and effectively separate the photoinduced electrons and holes.Compared with Bi_(2)WO_(6),Fe_(2)O_(3)/Bi_(2)WO_(6)had no significant difference in the adsorption capacity of MC-LR and had more efficient photocatalytic degradation activity of MC-LR.The degradation rates of MC-LR by Fe_(2)O_(3)/Bi_(2)WO_(6)and Bi_(2)WO_(6)reached 80%and 56%,respectively.The degradation efficiency of MC-LR was affected by the initial pH value,initial Fe_(2)O_(3)/Bi_(2)WO_(6)concentration,and initial MC-LR concentration.展开更多
Series Bi3NbO7/Bi2Zn(2/3)Nb(4/3)O7 (BN/BZN) composites were synthesized through a facile solid state reaction method. The products were characterized by X-ray diffraction(XRD), field emission scanning electron...Series Bi3NbO7/Bi2Zn(2/3)Nb(4/3)O7 (BN/BZN) composites were synthesized through a facile solid state reaction method. The products were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM) and UV-vis diffuse reflectance spectroscopy(DRS). When BN: BZN=0.1 mole ratio, the BN/BZN composite showed the best visible-light-driven photocatalytic performance, which decomposed nearly 100% of Rh B(10 ppm, p H=3-4) within 40 min. The results demonstrated that in-situ solid state synthesis of BN/BZN composites could be an efficient strategy to develop new photocatalyst for environmental remediation.展开更多
TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by...TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction, N2 adsorption desorption, and ultraviolet-visible diffuse spectroscopy. The results suggest that the presence of TiO2 nanocrystals with diameter of about 15 nm prevents GR nanosheets from agglomeration. Owing to the uniform distribution of TiO2 nanocrystals on the GR nanosheets, TiO2/GR composite exhibits stronger light absorption in the visible region, higher adsorption capacity to methylene blue and higher efficiency of charge separation and transportation compared with pure TiO2. Moreover, the TiO2/GR composite with a GR content of 30% shows higher photocatalytic removal efficiency of MB from water than that of pure TiO2 and commercial P25 under both UV and sunlight irradiation.展开更多
Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of ...Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of photogenerated carriers hinder the further improvement of the photocatalytic performance of Bi_(2)WO_(6).Herein,we provide a systematic review for the recent advances on Bi_(2)WO_(6)‐based photocatalysts.It starts with the crystal structure,optical properties and photocatalytic fundamentals of Bi_(2)WO_(6).Then,we focus on the modification strategies of Bi_(2)WO_(6)based on morphology control,atomic modulation and composite fabrication for diverse photocatalytic applications,such as organic synthesis,water splitting,CO2 reduction,water treatment,air purification,bacterial inactivation,etc.Finally,some current challenges and future development prospects are proposed.We expect that this review can provide a useful reference and guidance for the development of efficient Bi_(2)WO_(6)photocatalysts.展开更多
We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity...We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity is dependent on the mass ratio of C to CaFe2O4.The optimal carbon content is determined to be58wt%to yield a methylene blue(MB)degradation rate of0.0058min.1,which is4.8times higher than that of the pristine CaFe2O4NRs.The decoration of carbon on the surface of CaFe2O4NRs improves its adsorption capacity of the MB dye,which is specifically adsorbed on the surface as a monolayer according to the adsorption isotherm analysis.The trapping experiments of the reactive species indicate that superoxide radicals(.O2)are the main active species responsible for the removal of MB under visible‐light irradiation.Overall,the unique feature of carbon coating enables the efficient separation and transfer of photogenerated electrons and holes,strengthens the adsorption capacity of MB,and improves the light harvesting capability,hence enhancing the overall photocatalytic degradation of MB.展开更多
The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were ...The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were studied. The results showed that the doping of Fe 3+ , Co 2+ , Ni 2+ and Cr 3+ in TiO 2 nanoparticles made the photocatalytic efficiency of the TiO 2 particles reduce and the higher the initial content of Fe 3+ , the lower the ability of TiO 2 in photocatalyzing the degradation of RB. But the doping of Zn 2+ and Cd 2+ , especially Zn 2+ , made the photocatalytic efficiency of the TiO 2 particles enhance, showing a great increase of the rate constant( k ) and the initial reaction rate( r ini ).展开更多
文摘Polyaniline (PAn) sensitized nanocrystalline TiO2 composites (TiO2/PAn) were successfully prepared and used as an efficient photocatalyst for the degradation of dye methylene blue (MB). The results showed that PAn was able to sensitize TiO2 efficiently and the composite photocatalyst could be activated by absorbing both the ultraviolet and visible light (λ: 190 ~ 800 nm), whereas pure TiO2 absorbed ultraviolet light only (λ 〈 380 nm). Under the irradiation of natural light, MB could be degraded more efficiently on the TiO2/PAn composites than on the TiO2 Furthermore, it could be easily separated from the solution by simple sedimentation.
基金Project supported by the National Natural Science Foundation of China(No. 29977003, 20507011)the State Ministry of Education of China(No. 00028)
文摘TiO2 and montmorillonite composite photocatalysts were prepared and applied in degrading γ-hexachlorocyclohexane (γ-HCH) in soils. After being spiked with γ-HCH, soil samples loaded with the composite photocatalysts were exposed to UV-light irradiation. The results indicated that the photocatalytic activities of the composite photocatalysts varied with the content of TiO2 in the order of 10%〈70%〈50% 〈30%, Moreover, the photocatalytic activity of the composite photocatalysts with TiO2 content 30% was higher than that of the pure P25 with the same mass of TiO2. The strong adsorption capacity of the composite photocatalysts and quantum size effect may contribute to its increased photocatalytic activities. In addition, effect of dosage of composite photocatalysts and soil pH on γ-HCH photodegradation was investigated. Pentachlorocyclohexene, trichlorocyclohexene, and dichlorobenzene were detected as photodegradation intermediates, which were gradually degraded with the photodegradation evolution.
基金Supported by the National Natural Science Foundation of China(21525625,21838001)the National Basic Research Program(973 Program)of China(2014CB745100)+1 种基金the(863)High Technology Project of China(2013AA020302)the Chinese Universities Scientific Fund(JD1417)
文摘Trace environmental pollutants have become a serious problem with special attention on the hazardous heavy metals, refractory organics, and pathogenic microorganisms. With coupling biosorption and photocatalysis to develop biomaterial/TiO2 composite photocatalysts is a promising method to remove these trace pollutants because of the synergistic effect. Biomaterials provide multiple function groups which can selectively and efficiently enrich trace pollutants onto the surface of the photocatalysts, thus facilitating the following transformation mediated by TiO2 photocatalysis. Biomaterials can also help the dispersion and recovery of TiO2, or even modify the band structure of TiO2. The fabrication of chitosan/TiO2, cellulose/TiO2, as well as other biomaterial/TiO2 composite photocatalysts is discussed in detail in this review. The application significance of these composite photocatalysts for the selective removal of trace pollutants is also addressed. Several problems should be solved before the realistic applications can be achieved as discussed in the final section.
基金This project was financially supported by Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050225006)the National Natural Science Foundation of China (No. 30400339).
文摘A high active novel TiO2/AC composite photocatalyst was prepared and used for phenol degradation. It was much more active than P-25 and exhibiting good decantability, less deactivation after several runs and less sensitive to pH change. Diffuse reflectance spectra (DRS) revealed that the electronic change in TiO2 did not occur by the addition of AC. Results of SEM and XRD suggested that better TiO2 distribution can be achieved when optimal AC content was adopted. The performance of the prepared TiO2/5AC catalyst revealed great practical potential in wastewater treatment field.
基金This work was supported by the Opening Project of the Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education(LZJ2002)the Open Project of Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province(CSPC2016-3-2).
文摘AgCl/Ti_(3)C_(2)@TiO_(2)ternary composites were prepared to form a heterojunction structure between AgCl and TiO_(2)and introduce Ti3C2 as a cocatalyst.The as-prepared AgCl/Ti_(3)C_(2)@TiO_(2)composites showed higher photocatalytic activity than pure AgCl and Ti_(3)C_(2)@TiO_(2)for photooxidation of a 1,4-dihydropyridine derivative(1,4-DHP)and tetracycline hydrochloride(TCH)under visible light irradiation(λ>400 nm).The photocatalytic activity of AgCl/Ti_(3)C_(2)@TiO_(2)composites depended on Ti_(3)C_(2)@TiO_(2)content,and the catalytic activity of the optimized samples were 6.9 times higher than that of pure AgCl for 1,4-DHP photodehydrogenation and 7.3 times higher than that of Ti_(3)C_(2)@TiO_(2)for TCH photooxidation.The increased photocatalytic activity was due to the formation of a heterojunction structure between AgCl and TiO_(2)and the introduction of Ti3C2 as a cocatalyst,which lowered the internal resistance,sped up the charge transfer,and increased the separation efficiency of photogenerated carries.Photogenerated holes and superoxide radical anions were the major active species in the photocatalytic process.
基金Acknowledgements: This project is supported by the fund of the Plan of Postgraduate Scientific Research Innovation of Jiangsu Province (No. CX07B_175z) and the Natural Science Foundation of Henan Province (No. 0624720029).
文摘Photocatalyst CoPcS/TiO2 was prepared by sol-gel method. Composite CoPcS/TiO2/K2Ti4O9 was prepared by dipping. It was incandesced at various temperatures and modification effect was compared. The results showed that optical absorption of sample incandesce at 423K occurred significant red-shift. Light absorption width extended from ultraviolet region to visible region, especially there was an intensive absorption between 600 nm and 680 nm. X-ray diffraction spectrogram showed that TiO2 in sample still maintained anatase crystal form. Under the illumination of visible light, photocatalysis degradation experiment was taken with Eosin B as simulated pollutants. Decoloration rate of Eosin B was much improved. The rate can reach 80% in 300 minutes.
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.
文摘A nanoheterojunction composite photocatalyst Bi2O3/TiO2 working under visible-light (λ≥ 420 nm) was prepared by combining two semiconductors Bi2O3 and TiO2 varying the Bi2O3/TiO2 molar ratio. Maleic acid was employed as an organic binder to unite Bi2O3 and TiO2 nanoparticles. The SEM, TEM, XRD and diffuse reflectance spectra were utilized to characterize the prepared Bi2O3/TiO2 nanoheterojunction. The nanocomposite exhibited unusual high photocatalytic activity in decomposing 2-propanol in gas phase and phenol in aqueous phase and, evolution of CO2 under visible light irradiation while the end members exhibited low photocatalytic activity. The composite was optimized to 5 mol% Bi2O3/TiO2. The remarkable high photocatalytic efficiency originates from the unique relative energy band position of Bi2O3 and TiO2 as well as the absorption of visible light by Bi2O3.
基金supported by the Natural Science Foundation of Fujian Province(2016J01740)National Natural Science Foundation of China(21473096)the Outstanding Youth Scientific Research Cultivation Plan in Fujian Province University,and the guiding project of Fujian Province(2016Y0073)
文摘A novel In203/Bi24O31Br10 composite photocatalyst, where In2O3 nanoparticleswith the diameter of about 5-10 nm were tightly attached on the surface of Bi24O31Br10 plates, wasprepared by using hydrolysis, impregnation method and post-thermal process. Photocatalyticactivity was evaluated by the degradation of Rhodamine B under the visible light irradiation.Effects of the contents of In203 nanoparticles on the optical property and photocatalytic activity of In203/Bi24O31Br10 composite were also investigated. Compared with neat In203 and Bi24O31Brlomaterials, 15In203/Bi24O31Br10 composite exhibits the best photocatalytic activity owing to theefficient separation of photogenerated electron and hole pairs, which is evidenced byphotoluminence spectra. More than 95% of Rhodamine B solution can be degraded by15In203/Bi24O31Brlo sample in 30 min.
基金This work was supported by the National Natural Science Foundation of China(Grants No.91647206,51779079,51579073,and 51979137)the Fundation for Innovation Research Groups of the National Natural Science Fundation of China(Grant No.51421006).
文摘The long-standing popularity of semiconductor photocatalysis,due to its great potential in a variety of applications,has resulted in the creation of numerous semiconductor photocatalysts,and it stimulated the development of various characterization methods.In this study,Fe_(2)O_(3)/Bi_(2)WO_(6)composite with a flower-like microsphere and hierarchical structure was synthesized with the facile hydrothermal-impregnation method without any surfactants.X-ray diffraction(XRD),scanning electron microscopy(SEM),ultravioletevisible(UV-Vis)diffuse reflectance spectroscopy,and photoluminescence spectroscopy were used to characterize the structures of the samples.The specific surface area was estimated with the Brunauer-Emmett-Teller(BET)method,and pore size distribution was determined using the Barrett-Joyner-Halenda(BJH)method.The synthesized Fe_(2)O_(3)/Bi_(2)WO_(6)composite had an average diameter of approximately 4 nm,with smaller specific surface area and larger pore diameter than those of pristine Bi_(2)WO_(6).The results of XRD and SEM analyses confirmed that the composite was composed of Fe_(2)O_(3)and Bi_(2)WO_(6).The absorption edge of Bi_(2)WO_(6)was at a wavelength of 460 nm.By contrast,the absorption edge of Fe_(2)O_(3)/Bi_(2)WO_(6)to visible light was redshifted to 520 nm,with narrower bandgap width and stronger visible light response.It was also found that the main active substances in the degradation of microcystin-LR(MC-LR)were hydroxyl radicals(·OH)and electron holes(h^(+)).Consequently,the results further showed that the heterojunction between Fe_(2)O_(3)and Bi_(2)WO_(6)can improve the charge transfer rate and effectively separate the photoinduced electrons and holes.Compared with Bi_(2)WO_(6),Fe_(2)O_(3)/Bi_(2)WO_(6)had no significant difference in the adsorption capacity of MC-LR and had more efficient photocatalytic degradation activity of MC-LR.The degradation rates of MC-LR by Fe_(2)O_(3)/Bi_(2)WO_(6)and Bi_(2)WO_(6)reached 80%and 56%,respectively.The degradation efficiency of MC-LR was affected by the initial pH value,initial Fe_(2)O_(3)/Bi_(2)WO_(6)concentration,and initial MC-LR concentration.
基金Funded by the National Natural Science Foundation of China(No.51662005)the Guangxi Natural Science Foundation(No.2014GXNSFFA118004)
文摘Series Bi3NbO7/Bi2Zn(2/3)Nb(4/3)O7 (BN/BZN) composites were synthesized through a facile solid state reaction method. The products were characterized by X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM) and UV-vis diffuse reflectance spectroscopy(DRS). When BN: BZN=0.1 mole ratio, the BN/BZN composite showed the best visible-light-driven photocatalytic performance, which decomposed nearly 100% of Rh B(10 ppm, p H=3-4) within 40 min. The results demonstrated that in-situ solid state synthesis of BN/BZN composites could be an efficient strategy to develop new photocatalyst for environmental remediation.
文摘TiO2 nanocrystals/graphene (TiO2/GR) composite are prepared by combining flocculation and hydrothermal reduction technology using graphite oxide and TiO2 colloid as precursors. The obtained materials are examined by scanning electron microscopy, transition electron microscopy, X-ray diffraction, N2 adsorption desorption, and ultraviolet-visible diffuse spectroscopy. The results suggest that the presence of TiO2 nanocrystals with diameter of about 15 nm prevents GR nanosheets from agglomeration. Owing to the uniform distribution of TiO2 nanocrystals on the GR nanosheets, TiO2/GR composite exhibits stronger light absorption in the visible region, higher adsorption capacity to methylene blue and higher efficiency of charge separation and transportation compared with pure TiO2. Moreover, the TiO2/GR composite with a GR content of 30% shows higher photocatalytic removal efficiency of MB from water than that of pure TiO2 and commercial P25 under both UV and sunlight irradiation.
文摘Bismuth tungstate(Bi_(2)WO_(6))has become a research hotspot due to its potential in photocatalytic energy conversion and environmental purification.Nevertheless,the limited light absorption and fast recombination of photogenerated carriers hinder the further improvement of the photocatalytic performance of Bi_(2)WO_(6).Herein,we provide a systematic review for the recent advances on Bi_(2)WO_(6)‐based photocatalysts.It starts with the crystal structure,optical properties and photocatalytic fundamentals of Bi_(2)WO_(6).Then,we focus on the modification strategies of Bi_(2)WO_(6)based on morphology control,atomic modulation and composite fabrication for diverse photocatalytic applications,such as organic synthesis,water splitting,CO2 reduction,water treatment,air purification,bacterial inactivation,etc.Finally,some current challenges and future development prospects are proposed.We expect that this review can provide a useful reference and guidance for the development of efficient Bi_(2)WO_(6)photocatalysts.
基金supported by the National Natural Science Foundation of China(21503100)Natural Science Foundation of Jiangxi Province(20161BAB213071,20151BAB213010)+1 种基金Project of Education Department of Jiangxi Province(GJJ150325)Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University~~
文摘We report the fabrication and photocatalytic property of a composite of C/CaFe2O4nanorods(NRs)in an effort to reveal the influence of carbon modification.It is demonstrated that the photocatalytic degradation activity is dependent on the mass ratio of C to CaFe2O4.The optimal carbon content is determined to be58wt%to yield a methylene blue(MB)degradation rate of0.0058min.1,which is4.8times higher than that of the pristine CaFe2O4NRs.The decoration of carbon on the surface of CaFe2O4NRs improves its adsorption capacity of the MB dye,which is specifically adsorbed on the surface as a monolayer according to the adsorption isotherm analysis.The trapping experiments of the reactive species indicate that superoxide radicals(.O2)are the main active species responsible for the removal of MB under visible‐light irradiation.Overall,the unique feature of carbon coating enables the efficient separation and transfer of photogenerated electrons and holes,strengthens the adsorption capacity of MB,and improves the light harvesting capability,hence enhancing the overall photocatalytic degradation of MB.
文摘The transition metal ion doped TiO 2 nanoparticles were prepared with hydrothermal method, and the effects of doping different metal ions on the ability of TiO 2 in photocatalyzing degradation of rhodamine B(RB) were studied. The results showed that the doping of Fe 3+ , Co 2+ , Ni 2+ and Cr 3+ in TiO 2 nanoparticles made the photocatalytic efficiency of the TiO 2 particles reduce and the higher the initial content of Fe 3+ , the lower the ability of TiO 2 in photocatalyzing the degradation of RB. But the doping of Zn 2+ and Cd 2+ , especially Zn 2+ , made the photocatalytic efficiency of the TiO 2 particles enhance, showing a great increase of the rate constant( k ) and the initial reaction rate( r ini ).