The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species...The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles(polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the(111),(110) and(100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria.展开更多
The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonizatio...The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.展开更多
Cu-based catalysts have been extensively used in methanol steam reforming(MSR)reactions because of their low cost and high effi ciency.ZnO is often used in commercial Cu-based catalysts as both a structural and an ele...Cu-based catalysts have been extensively used in methanol steam reforming(MSR)reactions because of their low cost and high effi ciency.ZnO is often used in commercial Cu-based catalysts as both a structural and an electronic promoter to stabilize metal Cu nanoparticles and modify metal–support interfaces.Still,the further addition of chemical promoters is essential to further enhance the MSR reaction performance of the Cu/ZnO catalyst.In this work,CeO_(2)-doped Cu/ZnO catalysts were prepared using the coprecipitation method,and the eff ects of CeO_(2)on Cu-based catalysts were systematically investigated.Doping with appropriate CeO_(2)amounts could stabilize small Cu nanoparticles through a strong interaction between CeO_(2)and Cu,leading to the formation of more Cu+–ZnO x interfacial sites.However,higher CeO_(2)contents resulted in the formation of larger Cu nanoparticles and an excess of Cu+–CeO x interfacial sites.Consequently,the Cu/5CeO_(2)/ZnO catalyst with maximal Cu–ZnO interfaces exhibited the highest H 2 production rate of 94.6 mmolH2/(gcat·h),which was 1.5 and 10.2 times higher than those of Cu/ZnO and Cu/CeO_(2),respectively.展开更多
CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were ...CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were examined by means of a microreactor-GC system, HRTEM, XRD, TPR and XPS techniques. The results show that CuO has not catalytic activity and the activity of CeO2 is quite low for CO oxidation. However, the catalytic activity of CuO/CeO2 and Cu/ CeO2 catalysts increases significantly. Furthermore, the activity of CuO/CeO2 is higher than that of Cu/CeO2 catalysts.展开更多
The catalytic hydrogenation of carbon dioxide(CO_(2))to methanol(CH_(3)OH)represents a promising strategy for mitigating carbon emissions and closing the carbon cycle.This study demonstrates that the incorporation of ...The catalytic hydrogenation of carbon dioxide(CO_(2))to methanol(CH_(3)OH)represents a promising strategy for mitigating carbon emissions and closing the carbon cycle.This study demonstrates that the incorporation of Cu into MoS_(2)catalysts significantly enhances methanol selectivity and productivity.Through a combination of transmission electron microscope,X-ray diffraction,Raman,electron paramagnetic resonance,X-ray photoelectron spectrosco py,diffu se reflectance Infrared Fourier trans form spectroscopy,Xray absorption spectroscopy,temperature-programmed desorption,and kinetic analysis,we reveal that Cu modifies edge sulfur vacancies,thereby suppressing methane formation and promoting methanol synthesis.At 220℃and 5 MPa,the 2%Cu/MoS_(2)catalyst achieves 85.5%selectivity toward CH_(3)OH,and the methanol formation rate reaches 7.88 mmol gcat^(-1)h^(-1)(0.256 mmol mMoS_(2)-2 h^(-1)),representing the highest performance among MoS_(2)-based catalysts under comparable conditions.This work provides an efficient and potentially scalable approach for designing advanced MoS_(2)-based catalysts for CO_(2)hydrogenation.展开更多
文摘The atomic structure of the active sites in Cu/CeO2 catalysts is intimately associated with the copper-ceria interaction. Both the shape of ceria and the loading of copper affect the chemical bonding of copper species on ceria surfaces and the electronic and geometric character of the relevant interfaces. Nanostructured ceria, including particles(polyhedra), rods, and cubes, provides anchoring sites for the copper species. The atomic arrangements and chemical properties of the(111),(110) and(100) facets, preferentially exposed depending on the shape of ceria, govern the copper-ceria interactions and in turn determine their catalytic properties. Also, the metal loading significantly influences the dispersion of copper species on ceria with a specific shape, forming copper layers, clusters, and nanoparticles. Lower copper contents result in copper monolayers and/or bilayers while higher copper loadings lead to multi-layered clusters and faceted particles. The active sites are usually generated via interactions between the copper atoms in the metal species and the oxygen vacancies on ceria, which is closely linked to the number and density of surface oxygen vacancies dominated by the shape of ceria.
基金supported by the National Natural Science Foundation of China(Nos.22276060 and 21976059)Guangdong Basic and Applied Basic Research Foundation(No.2024A1515012636)China Scholarship Council Scholarship(No.201906155006)。
文摘The reduction of carbon emissions in the steel industry is a significant challenge,and utilizing CO_(2) from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization.However,steelwork off-gases typically contain various impurities,including H_(2)S,which can deactivate commercial methanol synthesis catalysts,Cu/ZnO/Al_(2)O_(3)(CZA).Reverse water-gas shift(RWGS)reaction is the predominant side reaction in CO_(2) hydrogenation to methanol which can occur at ambient pressure,enabling the decouple of RWGS from methanol production at high pressure.Then,a series of activated CZA catalysts has been in-situ pretreated in 400 ppm H_(2)S/Ar at 250℃and tested for both RWGS reaction at ambient pressure and CO_(2) hydrogenation to methanol at high pressure.An innovative decoupling strategy was employed to isolate the RWGS reaction from the methanol synthesis process,enabling the investigation of the evolution of active site structures and the poisoning mechanism through elemental analysis,X-ray Diffraction,X-ray Photoelectron Spectroscopy,Fourier Transform Infrared Spectroscopy,Temperature Programmed Reduction and CO_(2) Temperature Programmed Desorption.The results indicate that there are different dynamic migration behaviors of ZnO_(x) in the two reaction systems,leading to different poisoning mechanisms.These interesting findings are beneficial to develop sulfur resistant and durable highly efficient catalysts for CO_(2) hydrogenation to methanol,promoting the carbon emission reduction in steel industry.
基金This work was supported by the National Key R&D Program of China(2022YFB3805504),National Natural Science Foundation of China(22078089)China Postdoctoral Science Foundation(2023M731081)+3 种基金Shanghai Pilot Program for Basic Research(22TQ1400100-7)the Basic Research Program of Science and Technology Commission of Shanghai Municipality(22JC1400600)Open Foundation of Shanghai Jiao Tong University Shaoxing Research Institute of Renewable Energy and Molecular Engineering(Grant No.JDSX2022046)Shanghai Super Postdoctoral Fellow.
文摘Cu-based catalysts have been extensively used in methanol steam reforming(MSR)reactions because of their low cost and high effi ciency.ZnO is often used in commercial Cu-based catalysts as both a structural and an electronic promoter to stabilize metal Cu nanoparticles and modify metal–support interfaces.Still,the further addition of chemical promoters is essential to further enhance the MSR reaction performance of the Cu/ZnO catalyst.In this work,CeO_(2)-doped Cu/ZnO catalysts were prepared using the coprecipitation method,and the eff ects of CeO_(2)on Cu-based catalysts were systematically investigated.Doping with appropriate CeO_(2)amounts could stabilize small Cu nanoparticles through a strong interaction between CeO_(2)and Cu,leading to the formation of more Cu+–ZnO x interfacial sites.However,higher CeO_(2)contents resulted in the formation of larger Cu nanoparticles and an excess of Cu+–CeO x interfacial sites.Consequently,the Cu/5CeO_(2)/ZnO catalyst with maximal Cu–ZnO interfaces exhibited the highest H 2 production rate of 94.6 mmolH2/(gcat·h),which was 1.5 and 10.2 times higher than those of Cu/ZnO and Cu/CeO_(2),respectively.
基金Projected supported by the National Natural Science Foundation of China (20271028) and Tianjin Natural Science Foundation(033602511)
文摘CeO2 was synthesized via sol-gel process and used as supporter to prepare CuO/CeO2, Cu/CeO2 catalysts by impregnation method. The catalytic properties and characterization of CeO2, CuO/CeO2 and Cu/CeO2 catalysts were examined by means of a microreactor-GC system, HRTEM, XRD, TPR and XPS techniques. The results show that CuO has not catalytic activity and the activity of CeO2 is quite low for CO oxidation. However, the catalytic activity of CuO/CeO2 and Cu/ CeO2 catalysts increases significantly. Furthermore, the activity of CuO/CeO2 is higher than that of Cu/CeO2 catalysts.
基金financially supported by the National Natural Science Foundation of China(22172013 and 22372022)Special Project for Key Research and Development Program of Xinjiang Autonomous Region(2022B01033-3)+3 种基金the Liaoning Revitalization Talent Program(XLYC2203126)the Fundamental Research Funds for the Central Universities(DUT22LAB602)the CUHK Research Startup Fund(No.#4930981)the Excellence Co-innovation Program International Exchange Fund Project(Grant number:DUTIO-ZG-202505)。
文摘The catalytic hydrogenation of carbon dioxide(CO_(2))to methanol(CH_(3)OH)represents a promising strategy for mitigating carbon emissions and closing the carbon cycle.This study demonstrates that the incorporation of Cu into MoS_(2)catalysts significantly enhances methanol selectivity and productivity.Through a combination of transmission electron microscope,X-ray diffraction,Raman,electron paramagnetic resonance,X-ray photoelectron spectrosco py,diffu se reflectance Infrared Fourier trans form spectroscopy,Xray absorption spectroscopy,temperature-programmed desorption,and kinetic analysis,we reveal that Cu modifies edge sulfur vacancies,thereby suppressing methane formation and promoting methanol synthesis.At 220℃and 5 MPa,the 2%Cu/MoS_(2)catalyst achieves 85.5%selectivity toward CH_(3)OH,and the methanol formation rate reaches 7.88 mmol gcat^(-1)h^(-1)(0.256 mmol mMoS_(2)-2 h^(-1)),representing the highest performance among MoS_(2)-based catalysts under comparable conditions.This work provides an efficient and potentially scalable approach for designing advanced MoS_(2)-based catalysts for CO_(2)hydrogenation.