Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosio...Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties.展开更多
Crack-free Ga N/In Ga N multiple quantum wells(MQWs) light-emitting diodes(LEDs) are transferred from Si substrate onto electroplating Cu submount with embedded wide p-electrodes. The vertical-conducting n-side-up...Crack-free Ga N/In Ga N multiple quantum wells(MQWs) light-emitting diodes(LEDs) are transferred from Si substrate onto electroplating Cu submount with embedded wide p-electrodes. The vertical-conducting n-side-up configuration of the LED is achieved by using the through-hole structure. The widened embedded p-electrode covers almost the whole transparent conductive layer(TCL), which could not be applied in the conventional p-side-up LEDs due to the electrodeshading effect. Therefore, the widened p-electrode improves the current spreading property and the uniformity of luminescence. The working voltage and series resistance are thereby reduced. The light output of embedded wide p-electrode LEDs on Cu is enhanced by 147% at a driving current of 350 m A, in comparison to conventional LEDs on Si.展开更多
基金Key Research and Development Program of Shaanxi Province(2022GY-410)Funding of Western Titanium Technologies Co.,Ltd(WX2210)。
文摘Based on the microstructure characterization,electrochemical impedance spectroscopy,potentiodynamic polarization,and immersion corrosion,this work comparatively analyzed the differences in the electrochemical corrosion morphology and post-foil formation surface morphology of laser beam welded(LBW)sample and spin-formed sample,and compared the corrosion resistance and Cu foil formation ability of two samples in H_(2)SO_(4)/NaCl solution and CuSO_(4) reducing electrolyte.Results show that in H_(2)SO_(4) and NaCl solutions,LBW sample and spin-formed sample exhibit excellent passivation ability and corrosion resistance.Both samples show uniform corrosion morphologies and similar corrosion resistance in the strong acidic solution containing Cl^(-).Meanwhile,the Cu foil formation ability of the welded joint is similar to that of the spin-formed sample,and both samples obtain intact Cu foils with high-quality surfaces and small differences in properties.
基金supported by the National Natural Science Foundation of China(Grant Nos.61274039 and 51177175)the National Basic Research Program of China(Grant Nos.2010CB923201 and 2011CB301903)+1 种基金the Ph.D. Program Foundation of Ministry of Education of China(Grant No.20110171110021)the Foundation of the Key Technologies R&D Program of Guangdong Province,China(Grant No.2010A081002005)
文摘Crack-free Ga N/In Ga N multiple quantum wells(MQWs) light-emitting diodes(LEDs) are transferred from Si substrate onto electroplating Cu submount with embedded wide p-electrodes. The vertical-conducting n-side-up configuration of the LED is achieved by using the through-hole structure. The widened embedded p-electrode covers almost the whole transparent conductive layer(TCL), which could not be applied in the conventional p-side-up LEDs due to the electrodeshading effect. Therefore, the widened p-electrode improves the current spreading property and the uniformity of luminescence. The working voltage and series resistance are thereby reduced. The light output of embedded wide p-electrode LEDs on Cu is enhanced by 147% at a driving current of 350 m A, in comparison to conventional LEDs on Si.