期刊文献+
共找到1,767篇文章
< 1 2 89 >
每页显示 20 50 100
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
1
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
基于RIME优化VMD与TCN-Crossformer多尺度融合的短期电力负荷预测 被引量:2
2
作者 黄宇 胡怡然 +3 位作者 马金杰 梁博彦 崔玉雷 张浩 《电力科学与工程》 2025年第8期48-57,共10页
针对电力负荷序列的多尺度非平稳性与跨维度动态关联特征导致的协同建模难题,提出了一种基于霜冰优化算法(Rime optimization algorithm,RIME)改进的变分模态分解(Variational mode decomposition,VMD)与时间卷积网络(Temporal convolut... 针对电力负荷序列的多尺度非平稳性与跨维度动态关联特征导致的协同建模难题,提出了一种基于霜冰优化算法(Rime optimization algorithm,RIME)改进的变分模态分解(Variational mode decomposition,VMD)与时间卷积网络(Temporal convolutional network,TCN)-Crossformer多尺度融合的预测模型。首先,利用RIME算法以样本熵均值为适应度函数,自适应优化VMD的惩罚系数与模态数,抑制模态混叠并提升分解质量;其次,通过TCN的因果卷积与膨胀卷积结构提取各模态分量的局部时序波动特征,捕捉短期波动规律;最后,采用结合Crossformer的跨维度注意力机制,显式建模时间与特征维度的动态关联性,实现局部时序特征与全局依赖关系的多尺度协同融合。在南方某城市半小时级电力负荷数据集上的实验验证结果表明,相较于Informer等模型,所提模型的决定系数提升2.49%,平均绝对误差降低73.07%,且在四季预测中均表现出强鲁棒性。 展开更多
关键词 变分模态分解 跨维度注意力 RIME优化算法 时间卷积网络 crossformer
在线阅读 下载PDF
Edge Crossing Minimization Algorithm for Hierarchical Graphs Based on Genetic Algorithms 被引量:2
3
作者 Shen Wei xiang, Huang Jing wei College of Computer, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第Z1期555-559,共5页
We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following a... We present an edge crossing minimization algorithm for hierarchical graphs based on genetic algorithms, and comparing it with some heuristic algorithms. The proposed algorithm is more efficient and has the following advantages: the frame of the algorithms is unified, the method is simple, and its implementation and revision are easy. 展开更多
关键词 hierarchical graph edge crossing genetic algorithms
在线阅读 下载PDF
A Novel Bat Algorithm based on Cross Boundary Learning and Uniform Explosion Strategy 被引量:2
4
作者 YONG Jia-shi HE Fa-zhi +1 位作者 LI Hao-ran ZHOU Wei-qing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2019年第4期480-502,共23页
Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other... Population-based algorithms have been used in many real-world problems.Bat algorithm(BA)is one of the states of the art of these approaches.Because of the super bat,on the one hand,BA can converge quickly;on the other hand,it is easy to fall into local optimum.Therefore,for typical BA algorithms,the ability of exploration and exploitation is not strong enough and it is hard to find a precise result.In this paper,we propose a novel bat algorithm based on cross boundary learning(CBL)and uniform explosion strategy(UES),namely BABLUE in short,to avoid the above contradiction and achieve both fast convergence and high quality.Different from previous opposition-based learning,the proposed CBL can expand the search area of population and then maintain the ability of global exploration in the process of fast convergence.In order to enhance the ability of local exploitation of the proposed algorithm,we propose UES,which can achieve almost the same search precise as that of firework explosion algorithm but consume less computation resource.BABLUE is tested with numerous experiments on unimodal,multimodal,one-dimensional,high-dimensional and discrete problems,and then compared with other typical intelligent optimization algorithms.The results show that the proposed algorithm outperforms other algorithms. 展开更多
关键词 Optimization BAT algorithm cross BOUNDARY LEARNING UNIFORM explosion STRATEGY
在线阅读 下载PDF
A Cross Entropy-Genetic Algorithm for m-Machines No-Wait Job-ShopScheduling Problem 被引量:5
5
作者 Budi Santosa Muhammad Arif Budiman Stefanus Eko Wiratno 《Journal of Intelligent Learning Systems and Applications》 2011年第3期171-180,共10页
No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Seve... No-wait job-shop scheduling (NWJSS) problem is one of the classical scheduling problems that exist on many kinds of industry with no-wait constraint, such as metal working, plastic, chemical, and food industries. Several methods have been proposed to solve this problem, both exact (i.e. integer programming) and metaheuristic methods. Cross entropy (CE), as a new metaheuristic, can be an alternative method to solve NWJSS problem. This method has been used in combinatorial optimization, as well as multi-external optimization and rare-event simulation. On these problems, CE implementation results an optimal value with less computational time in average. However, using original CE to solve large scale NWJSS requires high computational time. Considering this shortcoming, this paper proposed a hybrid of cross entropy with genetic algorithm (GA), called CEGA, on m-machines NWJSS. The results are compared with other metaheuritics: Genetic Algorithm-Simulated Annealing (GASA) and hybrid tabu search. The results showed that CEGA providing better or at least equal makespans in comparison with the other two methods. 展开更多
关键词 NO-WAIT JOB SHOP Scheduling cross ENTROPY GENETIC algorithm Combinatorial Optimization
在线阅读 下载PDF
Large Thinned Array Design Based on Multi-objective Cross Entropy Algorithm
6
作者 边莉 边晨源 王书民 《Journal of Shanghai Jiaotong university(Science)》 EI 2015年第4期437-442,共6页
To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clus... To consider multi-objective optimization problem with the number of feed array elements and sidelobe level of large antenna array, multi-objective cross entropy(CE) algorithm is proposed by combining fuzzy c-mean clustering algorithm with traditional cross entropy algorithm, and specific program flow of the algorithm is given.Using the algorithm, large thinned array(200 elements) given sidelobe level(-10,-19 and-30 d B) problem is solved successfully. Compared with the traditional statistical algorithms, the optimization results of the algorithm validate that the number of feed array elements reduces by 51%, 11% and 6% respectively. In addition, compared with the particle swarm optimization(PSO) algorithm, the number of feed array elements from the algorithm is more similar, but the algorithm is more efficient. 展开更多
关键词 thinned array multi-objective optimization cross entropy(CE) algorithm particle swarm optimization(PSO) algorithm
原文传递
Coupled Cross-correlation Neural Network Algorithm for Principal Singular Triplet Extraction of a Cross-covariance Matrix 被引量:2
7
作者 Xiaowei Feng Xiangyu Kong Hongguang Ma 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第2期149-156,共8页
This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a nov... This paper proposes a novel coupled neural network learning algorithm to extract the principal singular triplet (PST) of a cross-correlation matrix between two high-dimensional data streams. We firstly introduce a novel information criterion (NIC), in which the stationary points are singular triplet of the crosscorrelation matrix. Then, based on Newton's method, we obtain a coupled system of ordinary differential equations (ODEs) from the NIC. The ODEs have the same equilibria as the gradient of NIC, however, only the first PST of the system is stable (which is also the desired solution), and all others are (unstable) saddle points. Based on the system, we finally obtain a fast and stable algorithm for PST extraction. The proposed algorithm can solve the speed-stability problem that plagues most noncoupled learning rules. Moreover, the proposed algorithm can also be used to extract multiple PSTs effectively by using sequential method. © 2014 Chinese Association of Automation. 展开更多
关键词 Clustering algorithms Covariance matrix Data mining Differential equations EXTRACTION Learning algorithms Negative impedance converters Newton Raphson method Ordinary differential equations Singular value decomposition
在线阅读 下载PDF
基于改进Cross算法的矿井复杂风网可视化解算系统 被引量:6
8
作者 孙臣良 题正义 赵铁文 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2008年第A01期25-27,共3页
为了提高矿井复杂风网的解算精度和效率,为通风系统分析和优化调节提供基础的技术参数,在通风网络理论的基础上,分析并改进了Cross解算模型,利用面向对象的程序设计方法、图形处理和数据库技术,研究了可视化解算系统的架构和功能组成。... 为了提高矿井复杂风网的解算精度和效率,为通风系统分析和优化调节提供基础的技术参数,在通风网络理论的基础上,分析并改进了Cross解算模型,利用面向对象的程序设计方法、图形处理和数据库技术,研究了可视化解算系统的架构和功能组成。系统不仅能够实现风路属性信息的维护与查询,而且可以完成通风网络图的生成与管理,快速、高精度的解算能力和完善的综合分析功能使其具有较高的适用性和实用价值,可以为矿井通风系统评价提供可靠的决策支持。 展开更多
关键词 通风网络 cross算法 可视化解算系统
在线阅读 下载PDF
基于自适应线性插值和最小二乘法的改进Cross测频算法 被引量:4
9
作者 陆惠斌 王大成 +2 位作者 徐勇 马寿虎 葛乐 《电力科学与技术学报》 CAS 北大核心 2016年第3期103-108,共6页
Cross测频算法简单且易于工程实现,但精度低,范围小,无法直接应用在电力系统监测与控制中。通过极小范数最小二乘法求解Cross算法中的偏差系数,并计算频率;应用自适应线性插值法修正标准基波频率以及对应周期内的采样点数,多次重复计算... Cross测频算法简单且易于工程实现,但精度低,范围小,无法直接应用在电力系统监测与控制中。通过极小范数最小二乘法求解Cross算法中的偏差系数,并计算频率;应用自适应线性插值法修正标准基波频率以及对应周期内的采样点数,多次重复计算频率,并设计开发基于CompactRIO平台的Cross改进算法测频模块,进行系统试验。试验结果表明,改进后的算法测频精度高,频宽大,不仅适用于传统电网,也适用于主动配电网。 展开更多
关键词 电力系统监测 频率测量 cross测频算法 CompactRIO平台
在线阅读 下载PDF
基于Cross-Validation的小波自适应去噪方法 被引量:5
10
作者 黄文清 戴瑜兴 李加升 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第11期40-43,共4页
小波去噪算法中,阈值的选择非常关键.提出一种自适应阈值选择算法.该算法先通过Cross-Validation方法将噪声干扰信号分成两个子信号,一个用于阈值处理,一个用作参考信号;再采用最深梯度法来寻求一个最优去噪阈值.仿真和实验结果表明:在... 小波去噪算法中,阈值的选择非常关键.提出一种自适应阈值选择算法.该算法先通过Cross-Validation方法将噪声干扰信号分成两个子信号,一个用于阈值处理,一个用作参考信号;再采用最深梯度法来寻求一个最优去噪阈值.仿真和实验结果表明:在均方误差意义上,所提算法去噪效果优于Donoho等提出的VisuShrink和SureShrink两种去噪算法,且不需要带噪信号的任何'先验信息',适应于实际信号去噪处理. 展开更多
关键词 小波变换 cross-Validation 自适应滤波 阈值
在线阅读 下载PDF
线性规划的无比值检验criss-cross算法 被引量:2
11
作者 颜红彦 潘平奇 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第12期1949-1952,共4页
Zionts提出的求解线性规划问题的criss-cross算法实际是一阶段算法,不过与传统一阶段算法不同,它交替进行原始和对偶迭代,而产生的既可以是原始可行解,也可以是对偶可行解。为了提高计算效率,文章提出了一种采用无比值检验规则的新criss... Zionts提出的求解线性规划问题的criss-cross算法实际是一阶段算法,不过与传统一阶段算法不同,它交替进行原始和对偶迭代,而产生的既可以是原始可行解,也可以是对偶可行解。为了提高计算效率,文章提出了一种采用无比值检验规则的新criss-cross算法,基于新算法编制的一个稠密软件在对40个小问题进行的数值试验中,就迭代次数而言,以2.12的比率胜过了传统的两阶段算法。 展开更多
关键词 线性规划 criss—cross算法 无比值检验规则
在线阅读 下载PDF
Cross-spectral root-min-norm algorithm for harmonics analysis in electric power system
12
作者 裴亮 李晶 +1 位作者 曹茂永 刘世萱 《Journal of Measurement Science and Instrumentation》 CAS 2012年第1期66-69,共4页
To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root... To avoid drawbacks of classic discrete Fourier transform(DFT)method,modern spectral estimation theory was introduced into harmonics and inter-harmonics analysis in electric power system.Idea of the subspace-based root-min-norm algorithm was described,but it is susceptive to noises with unstable performance in different SNRs.So the modified root-min-norm algorithm based on cross-spectral estimation was proposed,utilizing cross-correlation matrix and independence of different Gaussian noise series.Lots of simulation experiments were carried out to test performance of the algorithm in different conditions,and its statistical characteristics was presented.Simulation results show that the modified algorithm can efficiently suppress influence of the noises,and has high frequency resolution,high precision and high stability,and it is much superior to the classic DFT method. 展开更多
关键词 electric power system inter-harmonics cross-spectral estimation singular value decomposition(SVD) subspace decomposition min-norm algorithm
在线阅读 下载PDF
一种基于CROSS原始算法的频率测量法
13
作者 杜永忠 牛金才 《电气传动自动化》 2001年第3期34-35,共2页
目前在电力系统监测自动化装置中 ,对输入信号的处理大多采用高频直接交流采样利用Cross原始算法测量频率是一种非常有效的方法 ,它具有计算量小、精度高、速度快等优点。
关键词 频率测量法 cross算法 电能质量 计算机 电力系统
在线阅读 下载PDF
标准Criss-Cross剖分下线性有限元方程的快速AMG算法
14
作者 阳莺 舒适 喻海元 《湘潭大学自然科学学报》 CAS CSCD 2001年第4期9-13,共5页
首先对标准Criss -Cross剖分下的线性有限元空间进行能量正交分解 ,通过对正交子空间的双尺度分析 ,获得了一种合适的限制算子 ,进而构造相应的AMG算法 .数值实验结果表明 ,该方法对求解椭圆方程是非常有效和健壮的 ,且与通常的代数多... 首先对标准Criss -Cross剖分下的线性有限元空间进行能量正交分解 ,通过对正交子空间的双尺度分析 ,获得了一种合适的限制算子 ,进而构造相应的AMG算法 .数值实验结果表明 ,该方法对求解椭圆方程是非常有效和健壮的 ,且与通常的代数多重网格法相比较 。 展开更多
关键词 Criss-cross剖分 代数多重网格法 快速算法
在线阅读 下载PDF
全生命周期视野下人工智能数据出境安全监管的具体场景、重点风险及体系构建
15
作者 李贤森 李坤锦 《河北法学》 北大核心 2026年第2期101-122,共22页
人工智能的发展离不开数据这一核心生产要素。数据的跨境流动在提升模型性能与多样性的同时,也带来了个人信息泄露、商业秘密外流和国家数据主权受损等安全风险。人工智能的风险在其全生命周期中逐级递增,具体体现在算法开发、服务提供... 人工智能的发展离不开数据这一核心生产要素。数据的跨境流动在提升模型性能与多样性的同时,也带来了个人信息泄露、商业秘密外流和国家数据主权受损等安全风险。人工智能的风险在其全生命周期中逐级递增,具体体现在算法开发、服务提供以及算力调用等环节。数据出境的技术路径复杂且存在监管盲区,导致现行监管框架面临技术规避行为和重要数据识别困境等现实问题。为构建安全与发展平衡的人工智能数据出境安全的监管体系,需建立能够动态响应风险的监管框架,通过建立数据分级响应机制与出境“白名单”制度,细化重要数据动态分类标准,并设立权责统一的监管主体,从而为我国人工智能产业全球化协作提供坚实的法治保障。 展开更多
关键词 人工智能 数据安全 数据跨境流动 算法风险 数据出境监管
原文传递
基于Cross熵与改进麻雀搜索算法的图像分割模型
16
作者 黄蓉 陈倩诒 《计算机应用与软件》 北大核心 2024年第11期251-260,共10页
传统基于熵标准的图像分割法采用穷尽法搜索分割阈值,存在计算代价高、分割效率低的不足。针对这一问题,设计基于Cross熵与改进麻雀搜索算法的图像分割方法。为了提升标准麻雀搜索算法的寻优精度和寻优速率,利用反向学习机制进行种群初... 传统基于熵标准的图像分割法采用穷尽法搜索分割阈值,存在计算代价高、分割效率低的不足。针对这一问题,设计基于Cross熵与改进麻雀搜索算法的图像分割方法。为了提升标准麻雀搜索算法的寻优精度和寻优速率,利用反向学习机制进行种群初始化,改善初始种群结构,提升种群多样性和初始解质量。设计正余弦优化和惯性权重的发现者更新机制,提升发现者全局搜索能力。提出柯西混沌变异的追随者更新机制,结合混沌映射和柯西变异,避免算法产生局部最优。以Cross熵最小为标准评估个体适应度,利用改进麻雀搜索算法寻找图像分割最佳阈值,并实现图像分割。实验结果表明,改进算法在分割指标上表现优异,可以有效提升图像分割精度和分割效率。 展开更多
关键词 图像分割 交叉熵 麻雀搜索算法 反向学习 正余弦算法 柯西变异
在线阅读 下载PDF
基于遗传算法与Hardy-Cross方法的矿井通风机控制 被引量:1
17
作者 杜聿静 马建华 《煤矿机械》 2024年第8期54-57,共4页
针对矿井通风机系统控制的复杂问题,提出了一种遗传算法与Hardy-Cross方法相结合的矿井通风控制,强化了其在处理离散变量和非凸搜索空间中寻找全局最优解的能力。通过数学形式化定义问题并结合基尔霍夫定律,确立了通风机网络的优化模型... 针对矿井通风机系统控制的复杂问题,提出了一种遗传算法与Hardy-Cross方法相结合的矿井通风控制,强化了其在处理离散变量和非凸搜索空间中寻找全局最优解的能力。通过数学形式化定义问题并结合基尔霍夫定律,确立了通风机网络的优化模型。根据实际用风情况智能调节通风机的供风量,以实现能源节约和安全生产的目标。通过对某煤矿的通风案例深入研究和验证,风扇的配置在优化气流方面表现出了卓越性能。该研究不仅为矿山工程领域提供了新的优化思路和方法,也为通风机系统的管理提供了重要参考。 展开更多
关键词 矿井通风 遗传算法 通风机控制 Hardy-cross方法
原文传递
A novel algorithm of adaptive IIR lattice notch filter and performance analysis 被引量:3
18
作者 秦鹏 蔡萍 《Journal of Shanghai University(English Edition)》 CAS 2007年第5期485-489,共5页
A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal i... A novel adaptive algorithm of IIR lattice notch filter realized by all-pass filter is presented. The time-averaged estimation of cross correlation of the present instantaneous input signal and the past output signal is used to update the step-size, leading to a considerably improved convergence rate in a low SNR situation and reduced steady-state bias and MSE. The theoretical expression for steady-state bounds on the step-size is derived, and the influence factors on the stable performance of the algorithm theoretically are analyzed. A normalized power factor is then introduced to control variation of step-size in its steady-state bounds. This technique prevents divergence due to the influence of large power input signal and improves robustness. Numerical experiments are performed to demonstrate superiority of the proposed method. 展开更多
关键词 lattice notch filter adaptive algorithm cross correction steady-state bounds normalized power factor.
在线阅读 下载PDF
Development of an Efficient Genetic Algorithm for the Time Dependent Vehicle Routing Problem with Time Windows 被引量:2
19
作者 Suresh Nanda Kumar Ramasamy Panneerselvam 《American Journal of Operations Research》 2017年第1期1-25,共25页
This research considers the time-dependent vehicle routing problem (TDVRP). The time-dependent VRP does not assume constant speeds of the vehicles. The speeds of the vehicles vary during the various times of the day, ... This research considers the time-dependent vehicle routing problem (TDVRP). The time-dependent VRP does not assume constant speeds of the vehicles. The speeds of the vehicles vary during the various times of the day, based on the traffic conditions. During the periods of peak traffic hours, the vehicles travel at low speeds and during non-peak hours, the vehicles travel at higher speeds. A survey by TCI and IIM-C (2014) found that stoppage delay as percentage of journey time varied between five percent and 25 percent, and was very much dependent on the characteristics of routes. Costs of delay were also estimated and found not to affect margins by significant amounts. This study aims to overcome such problems arising out of traffic congestions that lead to unnecessary delays and hence, loss in customers and thereby valuable revenues to a company. This study suggests alternative routes to minimize travel times and travel distance, assuming a congestion in traffic situation. In this study, an efficient GA-based algorithm has been developed for the TDVRP, to minimize the total distance travelled, minimize the total number of vehicles utilized and also suggest alternative routes for congestion avoidance. This study will help to overcome and minimize the negative effects due to heavy traffic congestions and delays in customer service. The proposed algorithm has been shown to be superior to another existing algorithm in terms of the total distance travelled and also the number of vehicles utilized. Also the performance of the proposed algorithm is as good as the mathematical model for small size problems. 展开更多
关键词 TIME-DEPENDENT Vehicle ROUTING Problem GENETIC algorithm Chromosomes cross-OVER TRAVEL TIMES Vehicles
暂未订购
基于分解优化LSTM的RCS序列预测方法研究
20
作者 傅莉 张宝锟 +2 位作者 张磊 于洋 席剑辉 《电光与控制》 北大核心 2026年第1期71-77,共7页
为提高长短期记忆(LSTM)神经网络对雷达散射截面积(RCS)序列的预测精度,提出了一种改进MVMD-FTTA-LSTM的耦合预测模型。首先,对目标RCS序列进行多元变分模态分解(MVMD),将RCS序列分解成多个平稳的模态分量,从而降低RCS序列数据特征的获... 为提高长短期记忆(LSTM)神经网络对雷达散射截面积(RCS)序列的预测精度,提出了一种改进MVMD-FTTA-LSTM的耦合预测模型。首先,对目标RCS序列进行多元变分模态分解(MVMD),将RCS序列分解成多个平稳的模态分量,从而降低RCS序列数据特征的获取难度;然后,在足球队训练优化算法(FTTA)中引入佳点集、Levy飞行策略和自适应t分布变异策略,提高FTTA对最优解的寻优能力;最后,采用改进的FTTA-LSTM模型对分解后的模态分量进行预测,重构各分量的预测值,重构结果为最终预测值。仿真结果表明,改进MVMD-FTTA-LSTM模型的预测精度相对LSTM和VMD-LSTM都有大幅度提升,证明这种改进方法使得LSTM模型显著提高了对目标RCS序列的预测精度,为开展目标RCS序列预测工作提供了一条新思路。 展开更多
关键词 雷达散射截面积 多元变分模态分解 足球队训练优化算法 长短期记忆 神经网络 序列预测
在线阅读 下载PDF
上一页 1 2 89 下一页 到第
使用帮助 返回顶部