Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of phot...Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of photoelectric devices.However,pristine Mn^(2+):CsPbCl_(3)NCs commonly suffer from low photoluminescence quantum yield(PL QY) and stability issues.Herein,we introduced europium ions(Eu^(3+))into Mn^(2+):CsPbCl_(3)NCs via the thermal injection synthesis method to obtain high performance Eu^(3+)and Mn^(2+)codoped CsPbCl_(3)(Eu^(3+)/Mn^(2+):CsPbCl_(3)) NCs.The maximum PL QY of the resulting Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs reaches up to 90.92%.It is found that the doping of Eu^(3+)ions significantly reduces the non-radiative recombination caused by high defect states,and improves the energy transfer efficiency from exciton to Mn^(2+),thereby boosting the PL performance.Moreover,doping Eu^(3+)ions notably improves the UV-light and water stability of Mn^(2+):CsPbCl_(3)NCs.We further demonstrate the application versatility of Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs in white light emitting diodes(WLEDs) and optical anticounterfeiting applications.This work provides a valuable perspective for the attainment of high performance Mn^(2+):CsPbCl_(3)NCs and lays a foundation for the codoping of other lanthanide ions to adjust the luminescence properties of Mn^(2+):CsPbCl_(3)NCs.展开更多
The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alka...The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.展开更多
Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of ni...Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.展开更多
In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-dept...In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.展开更多
Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit fr...Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.展开更多
Boron doped diamond(BDD)electrode is a promising electrochemical material for detecting dopamine level in the human’s body.In this work,we developed a new doping source-graphite and solid boron oxide powders to synth...Boron doped diamond(BDD)electrode is a promising electrochemical material for detecting dopamine level in the human’s body.In this work,we developed a new doping source-graphite and solid boron oxide powders to synthesize BDD film with microwave plasma chemical vapor deposition,so as to avoid using toxic or corrosive dopants,such as boroethane and trimethylborate.The synthesized BDD film is pinhole free and with high doping density of 8.44×10^20 cm^-3 calculated from the Raman spectroscopy.Subsequently,Au nanospheres were decorated on the surface of BDD film to improve electrochemical performance of the BDD film.The Au nanoparticles modified BDD electrode demonstrates an excellent electrochemical response,a high sensitivity(in the range of 5μM-1 m M),and a low detection limit(~0.8μM)for detecting dopamine.展开更多
In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.How...In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.However,they are also confronted with the problem of unstable battery performance due to the heavy volume expansion and sluggish ion reaction kinetics.Herein,yolk-shell cobalt phosphosulfide nanocrystals encapsulating into multi-heterogeneous atom(N,P,S)-doped carbon framework(Co_(9)S_(8)/CoP@NPSC)were constructed by employing dodecahedral ZIF-67 as precursor and a polymer as carbon sources through simultaneous sulfidation and phosphorization processes.The synergistic effect of Co_(9)S_(8)and CoP component and the yolk-shell structure greatly improve the bettery performance and structural stability.In addition,the multiple hetero-atoms doped carbon frameworks enhance the conductivity of the electrode materials and increase the spacing of carbon layers to supply sufficient active sites and facilitate the Na^(+)/K^(+)transport.The electrochemical results demonstrated that Co_(9)S_(8)/CoP@NPSC exhibited the pleasant reversible capacity(360.47 mAh/g at 1 A/g)after 300 cycles and an unpredictable cycling stability(103.22 mAh/g after 1000 cycles)in the SIBs application.The ex-situ XRD and XPS analyses were further applied to study the sodium ion storage mechanism and the multi-step phase transition reaction of the yolk-shell heterogeneous structure.This work provides new perspectives for the preparation of novel structure metal phosphosulfide and their applications in anode materials for sodium/potassium batteries and other secondary batteries.展开更多
As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancin...As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.展开更多
Y_(3)Al_(2)Ga_(3)O_(12):Ce^(3+),Cr^(3+)(YAGG:Ce^(3+),Cr^(3+)),as a persistent luminescent material,has advantages of high initial luminescence intensity and long persistent time,which is promising in persistent lumine...Y_(3)Al_(2)Ga_(3)O_(12):Ce^(3+),Cr^(3+)(YAGG:Ce^(3+),Cr^(3+)),as a persistent luminescent material,has advantages of high initial luminescence intensity and long persistent time,which is promising in persistent luminescent material applications.At present,YAGG:Ce^(3+),Cr^(3+)powders exhibit good persistent performance,but their persistent performance of ceramics still needs to be further improved to meet the new requirements.In this work,(Y_(0.998)Ce_(0.002))_(3)(Al_(1-x)Cr_(x))_(2)Ga_(3)O_(12) ceramics with different Cr^(3+)doping concentrations were prepared by solid-state reaction,including air pre-sintering,hot isostatic pressing(HIP)post-treatment and air annealing,to investigate the effects of Cr^(3+)doping concentration on the microstructure,optical properties and persistent performance of the ceramics.The results showed that as the doping concentration of Cr^(3+)increased from 0.025%to 0.2%(in atom),no significant effect of Cr^(3+)concentration on the morphology of pre-sintered ceramics or HIP post-treatment ceramics was observed,but the in-line transmittance gradually increased while the persistent performance gradually decreased.Among them,YAGG:Ce^(3+),Cr^(3+)ceramics doped with 0.025%Cr^(3+)showed the strongest initial luminescence intensity exceeding 6055 mcd/m^(2) and a persistent time of 1030 min after air pre-sintering combined with HIP post-treatment and air annealing.By optimizing the Cr^(3+)doping concentration and the fabrication process,the persistent luminescence(PersL)performance of the YAGG:Ce^(3+),Cr^(3+)ceramics was obviously improved.展开更多
Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.W...Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.We investigated the formation of nitrogen-induced diaph-ite structures(hybrid diamond-graphite phases)and their role in changing the conductivity.Nitrogen doping in a hy-drogen-rich plasma environment promotes the emergence of unique sp^(3)-sp^(2)bonding interfaces,where diamond grains are covalently integrated with graphitic domains,facilitating a structure-driven electronic transition.High-resolution transmis-sion electron microscopy and selected area electron diffraction reveal five-fold,six-fold and twelve-fold symmetries,along with an atypical{200}crystallographic reflection,confirming diaphite formation in 5%and 10%N-doped UNCD films,while high-er doping levels(15%and 20%)result in extensive graphitization.Raman spectroscopy tracks the evolution of sp^(2)bonding with increasing nitrogen content,while atomic force microscopy and X-ray diffraction indicate a consistent diamond grain size of~8 nm.Cryogenic electronic transport measurements reveal a conductivity increase from 8.72 to 708 S/cm as the nitrogen dop-ing level increases from 5%to 20%,which is attributed to defect-mediated carrier transport and 3D weak localization.The res-ulting conductivity is three orders of magnitude higher than previously reported.These findings establish a direct correlation between diaphite structural polymorphism and tunable electronic properties in nitrogen-doped UNCD films,offering new ways for defect-engineering diamond-based electronic materials.展开更多
The development of high-performance,reproducible carbon(C)-based supercapacitors remains a significant challenge because of limited specific capacitance.Herein,we present a novel strategy for fabricating LaCoO_(x) and...The development of high-performance,reproducible carbon(C)-based supercapacitors remains a significant challenge because of limited specific capacitance.Herein,we present a novel strategy for fabricating LaCoO_(x) and cobalt(Co)-doped nanoporous C(LaCoO_(x)/Co@ZNC)through the carbonization of Co/Zn-zeolitic imidazolate framework(ZIF)crystals derived from a PVP-Co/Zn/La precursor.The unique ZIF structure effectively disrupted the graphitic C framework,preserved the Co active sites,and enhanced the electrical conductivity.The synergistic interaction between pyridinic nitrogen and Co ions further promoted redox reactions.In addition,the formation of a hierarchical pore structure through zinc sublimation facili-tated electrolyte diffusion.The resulting LaCoO_(x)/Co@ZNC exhibited exceptional electrochemical performance,delivering a remarkable specific capacitance of 2,789 F/g at 1 A/g and outstanding cycling stability with 92%capacitance retention after 3,750 cycles.Our findings provide the basis for a promising approach to advancing C-based energy storage technologies.展开更多
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we pro...Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.展开更多
Bismuth-doped antimony tungstate(Bi-doped Sb_(2)WO_(6))microspheres were synthesized via a novel hydrothermal synthesis approach.These microspheres were then used as active layers in gas sensors for the detection of c...Bismuth-doped antimony tungstate(Bi-doped Sb_(2)WO_(6))microspheres were synthesized via a novel hydrothermal synthesis approach.These microspheres were then used as active layers in gas sensors for the detection of carbon dioxide(CO_(2)),a significant greenhouse gas and a critical parameter for evaluating air quality.The incorporation of bismuth significantly enhances the gas-sensing performance of the Sb_(2)WO_(6)microspheres,with the 4%Bidoped sensing active layer achieving a remarkable response value of 15 when exposed to 200 ppm of CO_(2),outperforming the undoped Sb_(2)WO_(6).Furthermore,the selectivity of the 4%Bi-Sb_(2)WO_(6)sensor toward CO_(2)gas was enhanced relative to the Sb_(2)WO_(6)sensor.The fundamental mechanisms of gas sensing and the factors contributing to the improved CO_(2)response of 4%Bi-Sb_(2)WO_(6)micro spheres were investigated using density functional theory.Bi-doped Sb_(2)WO_(6)materials exhibit significant advantages in gas-sensing applications,including improved conductivity,enhanced gas adsorption capacity,increased reaction rates,good chemical stability,excellent selectivity,and the ability to adjust electron density.These characteristics enable Bi-doped Sb_(2)WO_(6)to demonstrate higher sensitivity and rapid response capabilities in gas sensors,making it suitable for practical applications.展开更多
α-MnO_(2) is a potential positive electrode material for aqueous zinc-ion batteries,but its electrochemical performance of zinc storage requires further improvement.In this paper,potassium ion-doped manganese dioxide...α-MnO_(2) is a potential positive electrode material for aqueous zinc-ion batteries,but its electrochemical performance of zinc storage requires further improvement.In this paper,potassium ion-doped manganese dioxide nanoscrolls(K-MnO_(2))with oxygen vacancy were synthesized by a one-step hydrothermal method.It was observed that the electrochemical specific capacity was 250.9 m Ah/g at a current density of 0.2 C,which was better than the existing commercialα-MnO_(2).At a high current of 1 C,these batteries demonstrate improved cycle stability.Synchrotron radiation and other experiments as well as DFT theoretical calculations provided additional evidence that K doping was efficient in regulating the metal bond type and the mean charge regulation of covalent bonds with oxygen atoms in MnO_(2).When Mn-O and Mn-K bonds are present,K-MnO_(2) showed outstanding adsorption of Zn~(2+)and further enhanced the Zn^(2+)embedding process.Simultaneously,oxygen defects caused by doping boosted the development of the nanoscroll structure,leading to an increase in active sites available for electrochemical reactions and subsequently enhancing the electrical conductivity ofα-MnO_(2).This study exhibits the potential of optimizing materials based on manganese with the introduction of a potassium doping strategy,resulting in improved performance for aquatic zinc-ion batteries,and presents novel perspectives for related research.展开更多
Tin-based metal organic complexes with breakable coordination bonds,multiple active sites,and high theoretical capacity have attracted wide attentiorials for lithium-ion batteries(LIBs).However,the inferior electrical...Tin-based metal organic complexes with breakable coordination bonds,multiple active sites,and high theoretical capacity have attracted wide attentiorials for lithium-ion batteries(LIBs).However,the inferior electrical conductivity and significant volume changes have limited their electrochemical stability and practical application performance.This work proposes a universal doping strategy for the preparation of tin-phthalic acid complexes(Sn-MOF)doped with metal atoms(Al,Cr,Mn,Fe,Co,Ni,Cu,Zn).Metal atoms are uniformly dispersed within Sn-MOF for enhancing electrical conductivity and accommodating appropriate volume expansion,resulting in improved rate capability and cycling stability.Additionally,compared to a series of doped Sn-MOF,Zn-doped Sn-MOF exhibits the most exceptional electrochemical performance with a high reversible capacity of 1131 mAh·g^(-1)and stable cycling performance at a current density of 0.5 A·g^(-1),delivering a capacity of 1065 mAh·g^(-1)after 500 cycles.Zn-doping catalyzes the lithiation reaction between Sn-MOF and Li^(+),promoting their reaction kinetics during the first cycle.Furthermore,the Zn-doped Sn-MOF is inclined to form a thin and stable solid electrolyte interface film to maintain cyclic stability.展开更多
Alumina ceramics are crucial for high-performance applications,such as turbine blades,due to their excellent thermal stability and mechanical properties.However,existing fabrication methods often fail to balance stren...Alumina ceramics are crucial for high-performance applications,such as turbine blades,due to their excellent thermal stability and mechanical properties.However,existing fabrication methods often fail to balance strength,porosity,and dimensional precision.This study partially fills this research gap through a systematic investigation of calcium oxide(CaO)doping effects on alumina ceramic cores fabricated via ceramic stereolithography,with controlled doping ratios and sintering parameters.A ceramic paste was prepared using coarse and fine Al_(2)O_(3) particles mixed with CaO as a sintering aid,followed by debinding and sintering to achieve optimal mechanical properties.The results show that CaO doping significantly enhances the fiexural strength of alumina cores while maintaining porosity levels between 20%and 30%and controlling the sintering shrinkage rate to about 5%.Additionally,CaO doping alters the microstructure by inhibiting the transformation of spherical fine particles into fiaky grains,improving sintering activity.However,as the CaO doping content increases,the bending strength increases,while the shrinkage rate of the material also tends to increase,resulting in a reduction in the overall porosity.This has a negative impact on the control of the manufacturing precision of turbine blades.Thus,although CaO doping improves strength and microstructure,achieving necessary dimensional control requires further optimization of doping content and sintering conditions.展开更多
基金Project supported by the National Natural Science Foundation of China (12174075)the Scientific and Technological Bases and Talents of Guangxi (Guike AD21220016)+1 种基金Guangxi Science and Technology Major Project(AA23073018)the special fund for Guangxi Bagui Scholars。
文摘Mn^(2+)-doped CsPbCl_(3)(Mn^(2+):CsPbCl_(3)) nanocrystals(NCs) have attracted considerable attention due to their unique strong and broad orange-red emission band,presenting promising applications in the field of photoelectric devices.However,pristine Mn^(2+):CsPbCl_(3)NCs commonly suffer from low photoluminescence quantum yield(PL QY) and stability issues.Herein,we introduced europium ions(Eu^(3+))into Mn^(2+):CsPbCl_(3)NCs via the thermal injection synthesis method to obtain high performance Eu^(3+)and Mn^(2+)codoped CsPbCl_(3)(Eu^(3+)/Mn^(2+):CsPbCl_(3)) NCs.The maximum PL QY of the resulting Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs reaches up to 90.92%.It is found that the doping of Eu^(3+)ions significantly reduces the non-radiative recombination caused by high defect states,and improves the energy transfer efficiency from exciton to Mn^(2+),thereby boosting the PL performance.Moreover,doping Eu^(3+)ions notably improves the UV-light and water stability of Mn^(2+):CsPbCl_(3)NCs.We further demonstrate the application versatility of Eu^(3+)/Mn^(2+):CsPbCl_(3)NCs in white light emitting diodes(WLEDs) and optical anticounterfeiting applications.This work provides a valuable perspective for the attainment of high performance Mn^(2+):CsPbCl_(3)NCs and lays a foundation for the codoping of other lanthanide ions to adjust the luminescence properties of Mn^(2+):CsPbCl_(3)NCs.
基金financially supported by the project of the National Natural Science Foundation of China(52322203)the Key Research and Development Program of Shaanxi Province(2024GHZDXM-21)。
文摘The design of cost-effective and efficient metal-free carbon-based catalysts for the hydrogen evolution reaction(HER)is of great significance for increasing the production of clean hydrogen by the electrolysis of alkaline water.Precise control of the electronic structure by heteroatom doping has proven to be efficient for increasing catalytic activity.Nevertheless,both the structural characteristics and the underlying mechanism are not well understood,especially for doping with two different atoms,thus limiting the use of these catalysts.We report the production of phosphorus and nitrogen co-doped hollow carbon nanospheres(HCNs)by the copolymerization of pyrrole and aniline at a Triton X-100 micelle-interface,followed by doping with phytic acid and carbonization.The unique pore structure and defect-rich framework of the HCNs expose numerous active sites.Crucially,the combined effect of graphitic nitrogen and phosphorus-carbon bonds modulate the local electronic structure of adjacent C atoms and facilitates electron transfer.As a res-ult,the HCN carbonized at 1100°C exhibited superior HER activity and an outstanding stability(70 h at a current density of 10 mA cm^(−2))in alkaline water,because of the large number of graphitic nitrogen and phosphorus-carbon bonds.
基金supported by the National Natural Science Foundation of China(No.51803041)the University and Local Integration Development Project of Yantai,China(No.2022 XDRHXMXK08).
文摘Herein,an external crosslinker facilitated the hypercrosslinking of ferrocene and a nitrogen heterocyclic compound(either melamine or imidazole)through a direct Friedel-Crafts reaction,which led to the formation of nitrogen-containing hypercrosslinked fer-rocene polymer precursors(HCP-FCs).Subsequent carbonization of these precursors results in the production of iron-nitrogen-doped por-ous carbon absorbers(Fe-NPCs).The Fe-NPCs demonstrate a porous structure comprising aggregated nanotubes and nanospheres.The porosity of this structure can be modulated by adjusting the iron and nitrogen contents to optimize impedance matching.The uniform dis-tribution of Fe-N_(x)C,N dipoles,andα-Fe within the carbon matrix can be ensured by using hypercrosslinked ferrocenes in constructing porous carbon,providing the absorber with numerous polarization sites and a conductive network.The electromagnetic wave absorption performance of the specially designed Fe-NPC-M_(2)absorbers is satisfactory,revealing a minimum reflection loss of-55.3 dB at 2.5 mm and an effective absorption bandwidth of 6.00 GHz at 2.0 mm.By utilizing hypercrosslinked polymers(HCPs)as precursors,a novel method for developing highly efficient carbon-based absorbing agents is introduced in this research.
基金supported by Natural Science Foundation of Shandong Province(Nos.ZR2022YQ42,ZR2021JQ15,ZR2021QE011,ZR2021ZD20,2022GJJLJRC-01)Innovative Team Project of Jinan(No.2021GXRC019)the National Natural Science Foundation of China(Nos.52022037,52202366).
文摘In contrast to research on active sites in nanomaterials,lithium tantalate single crystals,known for their exceptional optical properties and long-range ordered lattice structure,present a promising avenue for in-depth exploration of photocatalytic reaction systems with fewer constraints imposed by surface chemistry.Typically,the isotropy of a specific facet provides a perfect support for studying heteroatom doping.Herein,this work delves into the intrinsic catalytic sites for photocatalytic nitrogen fixation in iron-doped lithium tantalate single crystals.The presence of iron not only modifies the electronic structure of lithium tantalate,improving its light absorption capacity,but also functions as an active site for the nitrogen adsorption and activation.The photocatalytic ammonia production rate of the iron-doped lithium tantalate in pure water is maximum 26.95μg cm^(−2)h^(−1),which is three times higher than that of undoped lithium tantalate.The combination of first-principles simulations with in situ characterizations confirms that iron doping promotes the rate-determining step and changes the pathway of hydrogenation to associative alternating.This study provides a new perspective on in-depth investigation of intrinsic catalytic active sites in photocatalysis and other catalytic processes.
基金supported by the National Natural Science Foundation of China(Nos.52275395,51935014,and 82072084)the Science and Technology Innovation Program of Hunan Province(No.2023RC3046)+4 种基金the Young Elite Scientists Sponsorship Program byCAST(No.2020QNRC002)the NationalKeyResearchand Development Program of China(No.2023YFB4605800)the Central South University Innovation-Driven Research Programme(No.2023CXQD023)the Jiangxi Provincial Natural Science Foundation of China(No.20224ACB204013)the Project of State Key Laboratory of Precision Manufacturing for Extreme Service Performance,Central South University.
文摘Magnetostrictive Fe-Ga alloys have captivated substantial focus in biomedical applications because of their exceptional transition efficiency and favorable cytocompatibility.Nevertheless,Fe-Ga alloys always exhibit frustrating magnetostriction coefficients when presented in bulk dimensions.It is well-established that the magnetostrictive performance of Fe-Ga alloys is intimately linked to their phase and crystal structures.In this study,various concentrations of boron(B)were doped into Fe_(81)Ga_(19) alloys via the laser-beam powder bed fusion(LPBF)technique to tailor the crystal and phase structures,thereby improving the magnetostrictive performance.The results revealed the capacity for quick solidification of the LPBF process in expediting the solid solution of B element,which increased both lattice distortion and dislocations within the Fe-Ga matrix.These factors contributed to an elevation in the density of the modified-D0_(3) phase structure.Moreover,the prepared Fe-Ga-B alloys also exhibited a(001)preferred grain orientation caused by the high thermal gradients during the LPBF process.As a result,a maximum magnetostriction coefficient of 105 ppm was achieved in the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy.In alternating magnetic fields,all the LPBF-prepared alloys showed good dynamic magnetostriction response without visible hysteresis,while the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy presented a notable enhancement of~30%in magnetostriction coefficient when compared with the Fe_(81)Ga_(19) alloy.Moreover.the(Fe_(81)Ga_(19))_(98.5)B_(1.5) alloy exhibited favorable biocompatibility and osteogenesis,as confirmed by increased alkaline phosphatase(ALP)activity and the formation of mineralized nodules.These findings suggest that the B-doped Fe-Ga alloys combined with the LPBF technique hold promise for the development of bulk magnetostrictive alloys that are applicable for bone repair applications.
基金financially supported by the National Science Fund for Distinguished Young Scholars(No.51625201)the National Natural Science Foundation of China No.51,702,066+2 种基金the National Key Research and Development Program of China(No.2016YFE0201600)the Key Laboratory of Micro-systems and Micro-structures Manufacturing,Ministry of Education,Harbin Institute of Technology(No.2016KM001)the Innovative research group of NSFC11421091。
文摘Boron doped diamond(BDD)electrode is a promising electrochemical material for detecting dopamine level in the human’s body.In this work,we developed a new doping source-graphite and solid boron oxide powders to synthesize BDD film with microwave plasma chemical vapor deposition,so as to avoid using toxic or corrosive dopants,such as boroethane and trimethylborate.The synthesized BDD film is pinhole free and with high doping density of 8.44×10^20 cm^-3 calculated from the Raman spectroscopy.Subsequently,Au nanospheres were decorated on the surface of BDD film to improve electrochemical performance of the BDD film.The Au nanoparticles modified BDD electrode demonstrates an excellent electrochemical response,a high sensitivity(in the range of 5μM-1 m M),and a low detection limit(~0.8μM)for detecting dopamine.
基金supported by National Natural Science Foundation of China(Nos.52472194,52101243)Natural Science Foundation of Guangdong Province,China(No.2023A1515012619)the Science and Technology Planning Project of Guangzhou(No.202201010565)。
文摘In recent years,metal phosphosulfides have attracted great attention as the promising anode materials in sodium/potassium batteries because of their incorporation of the advantages of metal phosphides and sulfides.However,they are also confronted with the problem of unstable battery performance due to the heavy volume expansion and sluggish ion reaction kinetics.Herein,yolk-shell cobalt phosphosulfide nanocrystals encapsulating into multi-heterogeneous atom(N,P,S)-doped carbon framework(Co_(9)S_(8)/CoP@NPSC)were constructed by employing dodecahedral ZIF-67 as precursor and a polymer as carbon sources through simultaneous sulfidation and phosphorization processes.The synergistic effect of Co_(9)S_(8)and CoP component and the yolk-shell structure greatly improve the bettery performance and structural stability.In addition,the multiple hetero-atoms doped carbon frameworks enhance the conductivity of the electrode materials and increase the spacing of carbon layers to supply sufficient active sites and facilitate the Na^(+)/K^(+)transport.The electrochemical results demonstrated that Co_(9)S_(8)/CoP@NPSC exhibited the pleasant reversible capacity(360.47 mAh/g at 1 A/g)after 300 cycles and an unpredictable cycling stability(103.22 mAh/g after 1000 cycles)in the SIBs application.The ex-situ XRD and XPS analyses were further applied to study the sodium ion storage mechanism and the multi-step phase transition reaction of the yolk-shell heterogeneous structure.This work provides new perspectives for the preparation of novel structure metal phosphosulfide and their applications in anode materials for sodium/potassium batteries and other secondary batteries.
基金supported by the National Natural Science Foundation of China(Nos.52130204,52174376,52202070,51822405)Guangdong Basic and Applied Basic Research Foundation(No.2021B1515120028)+6 种基金TQ Innovation Foundation(No.23-TQ09-02-ZT-01-005)Aeronautical Science Foundation of China(No.20220042053001)Science and Technology Innovation Team Plan of Shaanxi Province(No.2021TD-17)Key R&D Project of Shaanxi Province(No.2024GX-YBXM-220)Thousands Person Plan of Jiangxi Province(JXSQ2020102131)Fundamental Research Funds for the Central Universities(Nos.D5000230348,D5000220057)China Scholarship Council(Nos.202206290133,202306290190).
文摘As a 3D printing method,laser powder bed fusion(LPBF)technology has been extensively proven to offer significant advantages in fabricating complex structured specimens,achieving ultra-fine microstructures,and enhancing performances.In the domain of manufacturing melt-grown oxide ceramics,it encounters substantial challenges in suppressing crack defects during the rapid solidification process.The strategic integration of high entropy alloys(HEA),leveraging the significant ductility and toughness into ceramic powders represents a major innovation in overcoming the obstacles.The ingenious doping of HEA parti-cles preserves the eutectic microstructures of the Al_(2)O_(3)/GdAlO_(3)(GAP)/ZrO_(2)ceramic composite.The high damage tolerance of the HEA alloy under high strain rates enables the absorption of crack energy and alleviation of internal stresses during LPBF,effectively reducing crack initiation and growth.Due to in-creased curvature forces and intense Marangoni convection at the top of the molt pool,particle collision intensifies,leading to the tendency of HEA particles to agglomerate at the upper part of the molt pool.However,this phenomenon can be effectively alleviated in the remelting process of subsequent layer de-position.Furthermore,a portion of the HEA particles partially dissolves and sinks into the molten pool,acting as heterogeneous nucleation particles,inducing the formation of equiaxed eutectic and leading pri-mary phase nucleation.Some HEA particles diffuse into the lamellar ternary eutectic structures,further promoting the refinement of eutectic microstructures due to increased undercooling.The innovative dop-ing of HEA particles has effectively facilitated the fabrication of turbine-structured,conical,and cylindrical ternary eutectic ceramic composite specimens with diameters of about 70 mm,demonstrating significant developmental potential in the field of ceramic composite manufacturing.
基金National Key R&D Program of China(2023YFB3506600)。
文摘Y_(3)Al_(2)Ga_(3)O_(12):Ce^(3+),Cr^(3+)(YAGG:Ce^(3+),Cr^(3+)),as a persistent luminescent material,has advantages of high initial luminescence intensity and long persistent time,which is promising in persistent luminescent material applications.At present,YAGG:Ce^(3+),Cr^(3+)powders exhibit good persistent performance,but their persistent performance of ceramics still needs to be further improved to meet the new requirements.In this work,(Y_(0.998)Ce_(0.002))_(3)(Al_(1-x)Cr_(x))_(2)Ga_(3)O_(12) ceramics with different Cr^(3+)doping concentrations were prepared by solid-state reaction,including air pre-sintering,hot isostatic pressing(HIP)post-treatment and air annealing,to investigate the effects of Cr^(3+)doping concentration on the microstructure,optical properties and persistent performance of the ceramics.The results showed that as the doping concentration of Cr^(3+)increased from 0.025%to 0.2%(in atom),no significant effect of Cr^(3+)concentration on the morphology of pre-sintered ceramics or HIP post-treatment ceramics was observed,but the in-line transmittance gradually increased while the persistent performance gradually decreased.Among them,YAGG:Ce^(3+),Cr^(3+)ceramics doped with 0.025%Cr^(3+)showed the strongest initial luminescence intensity exceeding 6055 mcd/m^(2) and a persistent time of 1030 min after air pre-sintering combined with HIP post-treatment and air annealing.By optimizing the Cr^(3+)doping concentration and the fabrication process,the persistent luminescence(PersL)performance of the YAGG:Ce^(3+),Cr^(3+)ceramics was obviously improved.
文摘Nitrogen doping in chemical vapor deposition-derived ultrananocrystalline diamond(UNCD)films in-creases the electronic conductivity,yet its microstructural effects on electron transport are insufficiently understood.We investigated the formation of nitrogen-induced diaph-ite structures(hybrid diamond-graphite phases)and their role in changing the conductivity.Nitrogen doping in a hy-drogen-rich plasma environment promotes the emergence of unique sp^(3)-sp^(2)bonding interfaces,where diamond grains are covalently integrated with graphitic domains,facilitating a structure-driven electronic transition.High-resolution transmis-sion electron microscopy and selected area electron diffraction reveal five-fold,six-fold and twelve-fold symmetries,along with an atypical{200}crystallographic reflection,confirming diaphite formation in 5%and 10%N-doped UNCD films,while high-er doping levels(15%and 20%)result in extensive graphitization.Raman spectroscopy tracks the evolution of sp^(2)bonding with increasing nitrogen content,while atomic force microscopy and X-ray diffraction indicate a consistent diamond grain size of~8 nm.Cryogenic electronic transport measurements reveal a conductivity increase from 8.72 to 708 S/cm as the nitrogen dop-ing level increases from 5%to 20%,which is attributed to defect-mediated carrier transport and 3D weak localization.The res-ulting conductivity is three orders of magnitude higher than previously reported.These findings establish a direct correlation between diaphite structural polymorphism and tunable electronic properties in nitrogen-doped UNCD films,offering new ways for defect-engineering diamond-based electronic materials.
基金supported financially by National Natural Science Foundation of China(NSFC)(Nos.22478115,22075083)the Programme of Introducing Talents of Discipline to Universities(No.B16017).
文摘The development of high-performance,reproducible carbon(C)-based supercapacitors remains a significant challenge because of limited specific capacitance.Herein,we present a novel strategy for fabricating LaCoO_(x) and cobalt(Co)-doped nanoporous C(LaCoO_(x)/Co@ZNC)through the carbonization of Co/Zn-zeolitic imidazolate framework(ZIF)crystals derived from a PVP-Co/Zn/La precursor.The unique ZIF structure effectively disrupted the graphitic C framework,preserved the Co active sites,and enhanced the electrical conductivity.The synergistic interaction between pyridinic nitrogen and Co ions further promoted redox reactions.In addition,the formation of a hierarchical pore structure through zinc sublimation facili-tated electrolyte diffusion.The resulting LaCoO_(x)/Co@ZNC exhibited exceptional electrochemical performance,delivering a remarkable specific capacitance of 2,789 F/g at 1 A/g and outstanding cycling stability with 92%capacitance retention after 3,750 cycles.Our findings provide the basis for a promising approach to advancing C-based energy storage technologies.
基金National Natural Science Foundation of China (62104061, 62074052, 61974173 and 52072327)。
文摘Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.
基金financially supported by the Outstanding Youth Foundation of Jiangsu Province of China(No.BK20211548)Yangzhou Science and Technology Plan Project(No.YZ2023246)+1 种基金China Scholarship Council(No.202308320445)the Postgraduate Research and Practice Innovation Program of Jiangsu Province of China(No.KYCX23_3551)
文摘Bismuth-doped antimony tungstate(Bi-doped Sb_(2)WO_(6))microspheres were synthesized via a novel hydrothermal synthesis approach.These microspheres were then used as active layers in gas sensors for the detection of carbon dioxide(CO_(2)),a significant greenhouse gas and a critical parameter for evaluating air quality.The incorporation of bismuth significantly enhances the gas-sensing performance of the Sb_(2)WO_(6)microspheres,with the 4%Bidoped sensing active layer achieving a remarkable response value of 15 when exposed to 200 ppm of CO_(2),outperforming the undoped Sb_(2)WO_(6).Furthermore,the selectivity of the 4%Bi-Sb_(2)WO_(6)sensor toward CO_(2)gas was enhanced relative to the Sb_(2)WO_(6)sensor.The fundamental mechanisms of gas sensing and the factors contributing to the improved CO_(2)response of 4%Bi-Sb_(2)WO_(6)micro spheres were investigated using density functional theory.Bi-doped Sb_(2)WO_(6)materials exhibit significant advantages in gas-sensing applications,including improved conductivity,enhanced gas adsorption capacity,increased reaction rates,good chemical stability,excellent selectivity,and the ability to adjust electron density.These characteristics enable Bi-doped Sb_(2)WO_(6)to demonstrate higher sensitivity and rapid response capabilities in gas sensors,making it suitable for practical applications.
基金supported by Beijing Synchrotron Radiation 4B9A and 1W2A Work Station in China,National Natural Science Foundation of China(No.52250710161)。
文摘α-MnO_(2) is a potential positive electrode material for aqueous zinc-ion batteries,but its electrochemical performance of zinc storage requires further improvement.In this paper,potassium ion-doped manganese dioxide nanoscrolls(K-MnO_(2))with oxygen vacancy were synthesized by a one-step hydrothermal method.It was observed that the electrochemical specific capacity was 250.9 m Ah/g at a current density of 0.2 C,which was better than the existing commercialα-MnO_(2).At a high current of 1 C,these batteries demonstrate improved cycle stability.Synchrotron radiation and other experiments as well as DFT theoretical calculations provided additional evidence that K doping was efficient in regulating the metal bond type and the mean charge regulation of covalent bonds with oxygen atoms in MnO_(2).When Mn-O and Mn-K bonds are present,K-MnO_(2) showed outstanding adsorption of Zn~(2+)and further enhanced the Zn^(2+)embedding process.Simultaneously,oxygen defects caused by doping boosted the development of the nanoscroll structure,leading to an increase in active sites available for electrochemical reactions and subsequently enhancing the electrical conductivity ofα-MnO_(2).This study exhibits the potential of optimizing materials based on manganese with the introduction of a potassium doping strategy,resulting in improved performance for aquatic zinc-ion batteries,and presents novel perspectives for related research.
基金support from Natural Science Foundations of Henan Province(Nos.222300420502 and 232300420093)the Program for Science and Technology Innovation Talents in Universities of Henan Province(No.24HASTIT006)the Key Science and Technology Program of Henan Province(No.222102240044)。
文摘Tin-based metal organic complexes with breakable coordination bonds,multiple active sites,and high theoretical capacity have attracted wide attentiorials for lithium-ion batteries(LIBs).However,the inferior electrical conductivity and significant volume changes have limited their electrochemical stability and practical application performance.This work proposes a universal doping strategy for the preparation of tin-phthalic acid complexes(Sn-MOF)doped with metal atoms(Al,Cr,Mn,Fe,Co,Ni,Cu,Zn).Metal atoms are uniformly dispersed within Sn-MOF for enhancing electrical conductivity and accommodating appropriate volume expansion,resulting in improved rate capability and cycling stability.Additionally,compared to a series of doped Sn-MOF,Zn-doped Sn-MOF exhibits the most exceptional electrochemical performance with a high reversible capacity of 1131 mAh·g^(-1)and stable cycling performance at a current density of 0.5 A·g^(-1),delivering a capacity of 1065 mAh·g^(-1)after 500 cycles.Zn-doping catalyzes the lithiation reaction between Sn-MOF and Li^(+),promoting their reaction kinetics during the first cycle.Furthermore,the Zn-doped Sn-MOF is inclined to form a thin and stable solid electrolyte interface film to maintain cyclic stability.
基金financially supported by the National Key R&D Program of China(No.2023YFB4606101)the National Key R&D Program of China(No.2022YFB4601404)+3 种基金the Innovative and Entrepreneurial PhD Program of Jiangsu Province(No.JSSCBS20210836)the youth program of Jiangnan University(No.JUSRP121038)the Taihu Talent Program of Wuxi Citythe Innovative and Entrepreneurial Talent Program of Jiangsu Province(No.JSSCRC2021531)。
文摘Alumina ceramics are crucial for high-performance applications,such as turbine blades,due to their excellent thermal stability and mechanical properties.However,existing fabrication methods often fail to balance strength,porosity,and dimensional precision.This study partially fills this research gap through a systematic investigation of calcium oxide(CaO)doping effects on alumina ceramic cores fabricated via ceramic stereolithography,with controlled doping ratios and sintering parameters.A ceramic paste was prepared using coarse and fine Al_(2)O_(3) particles mixed with CaO as a sintering aid,followed by debinding and sintering to achieve optimal mechanical properties.The results show that CaO doping significantly enhances the fiexural strength of alumina cores while maintaining porosity levels between 20%and 30%and controlling the sintering shrinkage rate to about 5%.Additionally,CaO doping alters the microstructure by inhibiting the transformation of spherical fine particles into fiaky grains,improving sintering activity.However,as the CaO doping content increases,the bending strength increases,while the shrinkage rate of the material also tends to increase,resulting in a reduction in the overall porosity.This has a negative impact on the control of the manufacturing precision of turbine blades.Thus,although CaO doping improves strength and microstructure,achieving necessary dimensional control requires further optimization of doping content and sintering conditions.