Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing addit...Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.展开更多
Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms ofclean energy from natural environmental sources.However,the photoelectric performance of these mat...Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms ofclean energy from natural environmental sources.However,the photoelectric performance of these materials isfrequently constrained by heat generation during light absorption,resulting in significant thermal losses.Most offerroelectric films produce photocurrent and thermocurrent with opposite polarity,thus weakening the coupledphoto-thermoelectric output of the devices.Here we report on a LaNiO_(3)/BiMn_(2)O_(5)(BMO)/ITO ferroelectric film toproduce photocurrent and thermocurrent with the same polarity.The polarity of the photocurrent generated bythe BMO film is shown to be determined solely by the direction of spontaneous polarization,overcoming thedetrimental effect of Schottky barrier for energy harvesting in device.We propose a new strategy to enhance thecoupling factor,thereby offering valuable new insights for optimizing the utilization of ferroelectric materials inboth light and heat energy applications.展开更多
Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applica...Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applications.Here,by utilizing time-resolved refectance spectroscopy,we demonstrate ultrafast spin–phonon coupling dynamics in multiferroic 0.58BiFeO_(3)-0.42Bi_(0.5)K_(0.5)TiO_(3)(BF-BKT)single crystals.With ultrafast laser pumping,coherent acoustic phonons with low damping are created in BF-BKT.Temperature-dependent results indicate that both the frequency and amplitude of laser-induced coherent phonons are sensitive to the emergence of antiferromagnetic order.Moreover,the spin state change driven by external magnetic felds can enhance the oscillation amplitude of the coherent acoustic phonons even above the magnetic Néel temperature.These fndings experimentally confrm that spin–phonon coupling in multiferroic materials exists not only in the spin-ordered state but also in the spin-disordered state,and not only in the equilibrium state but also in the non-equilibrium state excited by ultrafast lasers,suggesting their promising applications in high-frequency devices.展开更多
The uneven distribution of medical resources has led to increasingly frequent patient mobility;however, the interaction between this phenomenon and the healthcare supply-demand relationship remains underexplored. The ...The uneven distribution of medical resources has led to increasingly frequent patient mobility;however, the interaction between this phenomenon and the healthcare supply-demand relationship remains underexplored. The present study constructed the 2023Cross-City Patient Mobility Network in China using one million patient mobility data records obtained from online healthcare platforms. We applied urban network analysis to uncover mobility patterns and used the coupling coordination degree model to assess healthcare supply-demand relationships before and after patient mobility. Explainable machine learning further revealed the impact of supply-demand coupling on patient mobility. The results indicated the following: Patient mobility followed administrative boundaries, although megacities serve areas beyond provincial borders;The scale of healthcare supply and demand displayed a multi-centric spatial pattern with a general decline from east to west, and these characteristics of demand distribution were further solidified by patient mobility;Cities with low supply-demand coupling and undersupply experienced patient outflows, while cities with high coupling and oversupply attracted them. In turn, patient mobility helped balance healthcare supply and demand, optimising the coupling relationship across cities. Thus, this research not only provides a methodological reference for understanding the interaction between patient mobility and healthcare systems but also offers empirical insights for public health policy.展开更多
Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infr...Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.展开更多
Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental ...Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental investigation is important in correlating the catalytic activity and the products.In this work,a spatial resolution online mass spectrometry(MS)system was developed and applied to a Mn-Na_(2)WO_(4)/SiO_(2) catalyzed OCM system.In addition to the residue gas analysis,the system obtained the distribution information of the reactants and products in the reactor.At various setting temperatures,all species online MS signals were collected at different positions,mapping the reaction activity covering parameters including temperature,time and space.The distribution behavior of the catalytic activity,selectivity,and apparent activation energy were kinetically analyzed.Selectivity and additional carbon balance analysis strongly supported the radical coupling model of OCM and indicated that after the catalytic bed layer,there is a significant length in the reactor(>2 mm)filled with radicals.Based on the result,a designed new method by tuning the temperature field in the reactor was found effectively to improve the catalytic activity,especially the C_(2) yield from 702 to 773℃.展开更多
We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-pla...We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy,respectively.Based on the Landau–Lifshitz equation,the spin wave dispersion is derived,and then the frequency gap is observed due to the magnon–magnon coupling effect induced by symmetry breaking.The influence of saturation magnetization,exchange coupling interaction,perpendicular magnetic anisotropy,and wave vector on the coupling strength is studied in detail.We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength.By selecting the appropriate magnetic materials,the ultra-strong coupling regime can be achieved.The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.展开更多
Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,how...Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.展开更多
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an...Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.展开更多
Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoti...Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.展开更多
This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expan...This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.展开更多
The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and di...The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and discrete element method(DEM)was employed to investigate the mechanical behavior of asphalt pavement containing a pre-existing TD crack.The mesoscopic parameters of the model were calibrated based on the mixture modulus and the static mechanical response on the MLS66 test road.Finally,an analysis was performed to assess how variations in TD crack depth and longitudinal length affect the distribution patterns of transverse tensile stress,vertical shear stress,and vertical compressive stress.The results indicate that the vertical propagation of TD crack significantly increases both the tensile stress value and range on the middle surface,while the longitudinal development of TD crack has minimal impact.This phenomenon may result in more severe fatigue failure on the middle surface.With the vertical and longitudinal development of TD crack,the vertical shear stress and compressive stress show obvious"two-stage"characteristics.When the crack's vertical length reaches 40 mm,there is a sharp increase in stress on the upper surface.As the crack continues to propagate vertically,the growth of stress on the upper surface becomes negligible,while the stress in the middle and lower layers increased significantly.Conversely,for longitudinal development of TD crack,any changes in stress are insignificant when their length is less than 180 mm;however,as they continue to develop longitudinally beyond this threshold,there is a sharp increase in stress levels.These findings hold great significance for understanding pavement structure deterioration and maintenance behavior associated with TD crack.展开更多
Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,sy...Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents.展开更多
Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dyna...Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.展开更多
As the main geomaterials for coral reefs oil or gas extraction and underground infrastructure construction,coral reef limestone demonstrates significantly distinct mechanical responses compared to terrigenous rocks.To...As the main geomaterials for coral reefs oil or gas extraction and underground infrastructure construction,coral reef limestone demonstrates significantly distinct mechanical responses compared to terrigenous rocks.To investigate the mechanical behaviour of coral reef limestone under the coupling impact of size and strain rate,the uniaxial compression tests were conducted on reef limestone samples with length-to-diameter(L/D)ratio ranging from 0.5 to 2.0 at strain rate ranging from 10^(−5)·s^(−1)to 10^(−2)·s^(−1).It is revealed that the uniaxial compressive strength(UCS)and residual compressive strength(RCS)of coral reef limestone exhibits a decreasing trend with L/D ratio increasing.The dynamic increase factor(DIF)of UCS is linearly correlated with the logarithm of strain rate,while increasing the L/D ratio further enhances the DIF.The elastic modulus increases with strain rate or L/D ratio increasing,whereas the Poisson’s ratio approximates to a constant value of 0.24.The failure strain increases with strain rate increasing or L/D ratio decreasing,while the increase in L/D ratio will inhibit the enhancing effect of the strain rate.The high porosity and low mineral strength are the primary factors contributing to a high RCS of 16.7%–64.9%of UCS,a lower brittleness index and multiple irregular fracture planes.The failure pattern of coral reef limestone transits from the shear-dominated to the splitting-dominated failure with strain rate increasing or L/D ratio decreasing,which is mainly governed by the constrained zones induced by end friction and the strain rate-dependent crack propagation.Moreover,a predictive formula incorporating coupling effect of size and strain rate for the UCS of reef limestone was established and verified to effectively capture the trend of UCS.展开更多
The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and run...The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.展开更多
Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic str...Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic structure. In this work, Sb^(3+)/Te^(4+)ions doped Zn-based halide single crystals(SCs) with two STEs emissions have been synthesized and the possibility of its anti-counterfeiting application was explored.Further, the relationship between the strength of electron-phonon coupling and photoluminescence quantum yields(PLQYs) for STEs in a series of metal halides has been studied. And the semi-empirical range of the Huang-Rhys factors(S) for metal halides with excellent photoluminescence(PL) property has been summarized. This work provides ideas for further research into the relationship between luminescence performance and electron-phonon coupling of metal halides, and also provides a reference for designing the metal halides with high PLQYs.展开更多
Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to re...Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.展开更多
The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the ...The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.展开更多
Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density...Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density functional theory(DFT)calculations were performed at first to study the d–d orbital interaction of metallic Pt Pd Cu,revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction via capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms.Under the theoretical guidance,Pt Pd Cu medium entropy alloy aerogels(Pt Pd Cu MEAAs)catalysts have been designed and systematically screened for MOR under acid,alkaline and neutral electrolyte.Furthermore,DFT calculation and in-situ fourier transform infrared spectroscopy analysis indicate that Pt Pd Cu MEAAs follow the direct pathway via formate as the reactive intermediate to be directly oxidized to CO_(2).For practical direct methanol fuel cells(DMFCs),the Pt Pd Cu MEAAs-integrated ultra-thin catalyst layer(4–5μm thickness)as anode exhibits higher peak power density of 35 m W/cm^(2) than commercial Pt/C of 20 m W/cm^(2)(~40μm thickness)under the similar noble metal loading and an impressive stability retention at a 50-m A/cm^(2) constant current for 10 h.This work clearly proves that optimizing the intermediate adsorption capacity via d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs.展开更多
基金National Key Research and Development Program of China(2022YFB4600902)Shandong Provincial Science Foundation for Outstanding Young Scholars(ZR2024YQ020)。
文摘Wire arc additive manufacturing(WAAM)has emerged as a promising approach for fabricating large-scale components.However,conventional WAAM still faces challenges in optimizing microstructural evolution,minimizing additive-induced defects,and alleviating residual stress and deformation,all of which are critical for enhancing the mechanical performance of the manufactured parts.Integrating interlayer friction stir processing(FSP)into WAAM significantly enhances the quality of deposited materials.However,numerical simulation research focusing on elucidating the associated thermomechanical coupling mechanisms remains insufficient.A comprehensive numerical model was developed to simulate the thermomechanical coupling behavior in friction stir-assisted WAAM.The influence of post-deposition FSP on the coupled thermomechanical response of the WAAM process was analyzed quantitatively.Moreover,the residual stress distribution and deformation behavior under both single-layer and multilayer deposition conditions were investigated.Thermal analysis of different deposition layers in WAAM and friction stir-assisted WAAM was conducted.Results show that subsequent layer deposition induces partial remelting of the previously solidified layer,whereas FSP does not cause such remelting.Furthermore,thermal stress and deformation analysis confirm that interlayer FSP effectively mitigates residual stresses and distortion in WAAM components,thereby improving their structural integrity and mechanical properties.
基金supported by the National Natural Science Foundation of China(grant no.52072041)the Beijing Natural Science Foundation(grant no.JQ21007).
文摘Ferroelectric film materials have attracted significant interest due to their potential for harvesting various forms ofclean energy from natural environmental sources.However,the photoelectric performance of these materials isfrequently constrained by heat generation during light absorption,resulting in significant thermal losses.Most offerroelectric films produce photocurrent and thermocurrent with opposite polarity,thus weakening the coupledphoto-thermoelectric output of the devices.Here we report on a LaNiO_(3)/BiMn_(2)O_(5)(BMO)/ITO ferroelectric film toproduce photocurrent and thermocurrent with the same polarity.The polarity of the photocurrent generated bythe BMO film is shown to be determined solely by the direction of spontaneous polarization,overcoming thedetrimental effect of Schottky barrier for energy harvesting in device.We propose a new strategy to enhance thecoupling factor,thereby offering valuable new insights for optimizing the utilization of ferroelectric materials inboth light and heat energy applications.
基金supported by the National Key R&D Program of China(Grant No.2021YFA1600200)the National Natural Science Foundation of China(Grant Nos.U2032218 and 12111530283)。
文摘Besides equilibrium behavior,exploring the spin–phonon coupling in multiferroic materials under non-equilibrium conditions is crucial for a deep understanding of the mechanisms as well as their high-frequency applications.Here,by utilizing time-resolved refectance spectroscopy,we demonstrate ultrafast spin–phonon coupling dynamics in multiferroic 0.58BiFeO_(3)-0.42Bi_(0.5)K_(0.5)TiO_(3)(BF-BKT)single crystals.With ultrafast laser pumping,coherent acoustic phonons with low damping are created in BF-BKT.Temperature-dependent results indicate that both the frequency and amplitude of laser-induced coherent phonons are sensitive to the emergence of antiferromagnetic order.Moreover,the spin state change driven by external magnetic felds can enhance the oscillation amplitude of the coherent acoustic phonons even above the magnetic Néel temperature.These fndings experimentally confrm that spin–phonon coupling in multiferroic materials exists not only in the spin-ordered state but also in the spin-disordered state,and not only in the equilibrium state but also in the non-equilibrium state excited by ultrafast lasers,suggesting their promising applications in high-frequency devices.
基金Humanities and Social Sciences Fund of Ministry of Education of China,No.24YJA630097National Natural Science Foundation of China,No.42471304。
文摘The uneven distribution of medical resources has led to increasingly frequent patient mobility;however, the interaction between this phenomenon and the healthcare supply-demand relationship remains underexplored. The present study constructed the 2023Cross-City Patient Mobility Network in China using one million patient mobility data records obtained from online healthcare platforms. We applied urban network analysis to uncover mobility patterns and used the coupling coordination degree model to assess healthcare supply-demand relationships before and after patient mobility. Explainable machine learning further revealed the impact of supply-demand coupling on patient mobility. The results indicated the following: Patient mobility followed administrative boundaries, although megacities serve areas beyond provincial borders;The scale of healthcare supply and demand displayed a multi-centric spatial pattern with a general decline from east to west, and these characteristics of demand distribution were further solidified by patient mobility;Cities with low supply-demand coupling and undersupply experienced patient outflows, while cities with high coupling and oversupply attracted them. In turn, patient mobility helped balance healthcare supply and demand, optimising the coupling relationship across cities. Thus, this research not only provides a methodological reference for understanding the interaction between patient mobility and healthcare systems but also offers empirical insights for public health policy.
基金supported by the National Key Research and Development Program of China(Grant No.2024YFE0105200)the National Nature Science Foundation of China(Grant No.62405284)+2 种基金the Key Research and Development Program of Henan Province(Grant No.241111220600)the JSPS KAKENHI(Grant No.JP20K14785)the Murata Science Foundation.
文摘Vibrational strong coupling(VSC)provides a promising way towards not only enhanced control of infrared light but also reshaping of molecular properties,which opens up unprecedented opportunities in ultrasensitive infrared spectroscopy,modification of chemical reactions,and exploration of nonlinear quantum effects.Surface plasmon resonance,excited on simple plasmonic resonators in the infrared,has been demonstrated as a means to realize VSC,but suffers from either limited quality factor for realizing large Rabi splitting or poor reconfigurability for precise detuning control.Here we propose and experimentally demonstrate,for the first time,an on-chip plasmonic resonator based on degeneracy breaking of Wood’s anomaly for VSC.Leveraging the low damping rate of the surface state induced by this degeneracy breaking,we achieve a plasmonic resonance with a high-Q factor exceeding~110,resulting in a Rabi splitting up to~112 cm^(-1) with a subwavelength molecular layer.Additionally,the dispersion of the surface state allows for precise control over VSC detuning by simply adjusting the incident angle of excitation light,even in the absence of photons,enabling a broad detuning range up to 300 cm^(-1).These experimental results align well with our analytical model and numerical simulation.This work provides a promising integrated platform for VSC,with various potential applications in on-chip spectroscopy,polariton chemistry,and polariton devices.
文摘Oxidative coupling of methane(OCM)is a catalytic partial oxidation process that directly converts methane into C_(2) products.For this high temperature reaction,understanding the radical behavior through experimental investigation is important in correlating the catalytic activity and the products.In this work,a spatial resolution online mass spectrometry(MS)system was developed and applied to a Mn-Na_(2)WO_(4)/SiO_(2) catalyzed OCM system.In addition to the residue gas analysis,the system obtained the distribution information of the reactants and products in the reactor.At various setting temperatures,all species online MS signals were collected at different positions,mapping the reaction activity covering parameters including temperature,time and space.The distribution behavior of the catalytic activity,selectivity,and apparent activation energy were kinetically analyzed.Selectivity and additional carbon balance analysis strongly supported the radical coupling model of OCM and indicated that after the catalytic bed layer,there is a significant length in the reactor(>2 mm)filled with radicals.Based on the result,a designed new method by tuning the temperature field in the reactor was found effectively to improve the catalytic activity,especially the C_(2) yield from 702 to 773℃.
基金supported by the National Natural Science Foundation of China(Grant No.52201290)the Natural Science Foundation of Gansu Province(Grant No.24JRRA402)the 9th Research Institute of China Electronics Technology Group Corporation’s open projects(Grant No.2024SK-001-4).
文摘We report a theoretical analysis of magnon–magnon coupling in a noncollinear magnetic sandwiched structure with interlayer exchange interaction,which consists of two ferromagnetic layers with perpendicular and in-plane magnetic anisotropy,respectively.Based on the Landau–Lifshitz equation,the spin wave dispersion is derived,and then the frequency gap is observed due to the magnon–magnon coupling effect induced by symmetry breaking.The influence of saturation magnetization,exchange coupling interaction,perpendicular magnetic anisotropy,and wave vector on the coupling strength is studied in detail.We find that the coupling strength is strongly dependent on the saturation magnetization and a small saturation magnetization can lead to strong coupling strength.By selecting the appropriate magnetic materials,the ultra-strong coupling regime can be achieved.The precession information in time domain is solved and the alternating change of the precession components in two ferromagnetic layers implies the exchange of energy and information.
基金financially supported by the National Natural Science Foundation of China(Grants nos.62201411,62371378,22205168,52302150 and 62304171)the China Postdoctoral Science Foundation(2022M722500)+1 种基金the Fundamental Research Funds for the Central Universities(Grants nos.ZYTS2308 and 20103237929)Startup Foundation of Xidian University(10251220001).
文摘Defects-rich heterointerfaces integrated with adjustable crystalline phases and atom vacancies,as well as veiled dielectric-responsive character,are instrumental in electromagnetic dissipation.Conventional methods,however,constrain their delicate constructions.Herein,an innovative alternative is proposed:carrageenan-assistant cations-regulated(CACR)strategy,which induces a series of sulfides nanoparticles rooted in situ on the surface of carbon matrix.This unique configuration originates from strategic vacancy formation energy of sulfides and strong sulfides-carbon support interaction,benefiting the delicate construction of defects-rich heterostructures in M_(x)S_(y)/carbon composites(M-CAs).Impressively,these generated sulfur vacancies are firstly found to strengthen electron accumulation/consumption ability at heterointerfaces and,simultaneously,induct local asymmetry of electronic structure to evoke large dipole moment,ultimately leading to polarization coupling,i.e.,defect-type interfacial polarization.Such“Janus effect”(Janus effect means versatility,as in the Greek two-headed Janus)of interfacial sulfur vacancies is intuitively confirmed by both theoretical and experimental investigations for the first time.Consequently,the sulfur vacancies-rich heterostructured Co/Ni-CAs displays broad absorption bandwidth of 6.76 GHz at only 1.8 mm,compared to sulfur vacancies-free CAs without any dielectric response.Harnessing defects-rich heterostructures,this one-pot CACR strategy may steer the design and development of advanced nanomaterials,boosting functionality across diverse application domains beyond electromagnetic response.
基金financially supported by the National Natural Science Foundation of China(Nos.42272153 and 42472195)the Research Fund of PetroChina Tarim Oilfield Company(No.671023060003)the Research Fund of China National Petroleum Corporation Limited(No.2023ZZ16YJ04).
文摘Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX24_0102)the China Scholarship Council Program(202406190114)。
文摘Studying the coupling coordination development of new energy vehicles(NEVs)and the ecological environment in China is helpful in promoting the development of NEVs in the country and is of great significance in promoting high-quality development of new energy in China.This paper constructs an evaluation index system for the development of NEVs and the ecological environment.It uses game theory combining weighting model,particle swarm optimized projection tracking evaluation model,coupling coordination degree model,and machine learning algorithms to calculate and analyze the level of coupling coordination development of NEVs and the ecological environment in China from 2010 to 2021,and identifies the driving factors.The research results show that:(i)From 2010 to 2021,the development index of NEVs in China has steadily increased from 0.085 to 0.634,while the ecological environment level index significantly rose from 0.170 to 0.884,reflecting the continuous development of China in both NEVs and the ecological environment.(ii)From 2010 to 2012,the two systems—new energy vehicle(NEV)development and the ecological environment—were in a period of imbalance and decline.From 2013 to 2016,they underwent a transition period,and from 2017 to 2021,they entered a period of coordinated development showing a trend of benign and continuous improvement.By 2021,they reached a good level of coordination.(iii)Indicators such as the number of patents granted for NEVs,water consumption per unit of GDP,and energy consumption per unit of GDP are the main driving factors affecting the coupling coordination development of NEVs and the ecological environment in China.
基金support from Guangdong Science and Technology(20230505)Guangdong Provincial Philosophy and Social Science Planning Project(GD20SQ25)Guangdong Provincial Special Fund for Science and Technology Innovation Strategy in 2024(Cultivation of College Students’Science and Technology Innovation)(pdjh2024a391)during preparation of this manuscript.
文摘This study investigates the coordination between regional economic growth and ecological sustainability within the context of high-quality town economy development.To address the challenges of balancing economic expansion with environmental protection,a comprehensive evaluation index system is constructed,encompassing two key dimensions:regional economy and ecological environment.Using panel data from 2013 to 2022,the coupling coordination degree model is employed to quantify the interactions and synergy between these dimensions.Additionally,spatial econometric methods are applied to calculate both global and local Moran’s Index,revealing spatial clustering patterns,regional disparities,and heterogeneity.The relative development model further identifies critical factors influencing regional coordination,with a focus on the lagging development of basic infrastructure and public services.The findings demonstrate a positive temporal trend toward improved regional coordination and reduced development gaps,with a spatial pattern characterized by higher coupling degrees in eastern and central regions compared to western areas.Based on these results,this study proposes actionable strategies to enhance coordinated development,emphasizing ecological conservation,the establishment of green production and consumption systems,ecological restoration,and strengthened municipal collaboration.This revised abstract emphasizes the study’s purpose,methods,and key findings more clearly while maintaining a professional and concise tone.Finally,based on the above analysis results,the corresponding coordinated development suggestions of regional economy and ecological environment are given from the aspects of ecological environment protection measures,green production and consumption system construction,ecological environment restoration and municipal coordination.
基金supported by National Key R&D Program of China(Grant No.2021YFB2601200)Open Fund of National Engineering Research Center of Highway Maintenance Technology(Changsha University of Science&Technology)(No.kfj230207).
文摘The occurrence of top-down(TD)cracking has gradually become a prevalent issue in semi-rigid base asphalt pavements after prolonged service.A coupled simulation model integrating the finite difference method(FDM)and discrete element method(DEM)was employed to investigate the mechanical behavior of asphalt pavement containing a pre-existing TD crack.The mesoscopic parameters of the model were calibrated based on the mixture modulus and the static mechanical response on the MLS66 test road.Finally,an analysis was performed to assess how variations in TD crack depth and longitudinal length affect the distribution patterns of transverse tensile stress,vertical shear stress,and vertical compressive stress.The results indicate that the vertical propagation of TD crack significantly increases both the tensile stress value and range on the middle surface,while the longitudinal development of TD crack has minimal impact.This phenomenon may result in more severe fatigue failure on the middle surface.With the vertical and longitudinal development of TD crack,the vertical shear stress and compressive stress show obvious"two-stage"characteristics.When the crack's vertical length reaches 40 mm,there is a sharp increase in stress on the upper surface.As the crack continues to propagate vertically,the growth of stress on the upper surface becomes negligible,while the stress in the middle and lower layers increased significantly.Conversely,for longitudinal development of TD crack,any changes in stress are insignificant when their length is less than 180 mm;however,as they continue to develop longitudinally beyond this threshold,there is a sharp increase in stress levels.These findings hold great significance for understanding pavement structure deterioration and maintenance behavior associated with TD crack.
基金National Natural Science Foundation of China (U23A6005 and 22078069)Project funded by China Postdoctoral Science Foundation (GZB20230172 and 2023M740748)。
文摘Electrochemical conversion of lignin for the production of high-value heterocyclic aromatic compounds has great potential.We demonstrate the targeted synthesis and cation modulation of NiCo_(2)O_(4)spinel nanoboxes,synthesized via cation exchange and calcination oxidation.These catalysts exhibit excellent efficacy in the electrocatalytic conversion of lignin model compounds,specifically 2-phenoxy-1-phenylethanol,into nitrogen-containing aromatics,achieving high conversion rates and selectivities.These catalysts were synthesized via a cation exchange and calcination oxidation process,using Prussian blue nanocubes as precursors.The porous architecture and polymetallic composition of the NiCo_(2)O_(4)spinel demonstrated superior performance in electrocatalytic oxidative coupling,achieving a 99.2 wt%conversion rate of the 2-phenoxy-1-phenylethanol with selectivities of 37.5 wt%for quinoline derivatives and 31.5 wt%for phenol.Key innovations include the development of a sustainable one-pot synthesis method for quinoline derivatives,the elucidation of a multistage reaction pathway involving CAO bond cleavage,hydroxyaldol condensation,and CAN bond formation,and a deeper mechanistic understanding derived from DFT simulations.This work establishes a new strategy for lignin valorization,offering a sustainable route to produce high-value nitrogen-containing aromatics from renewable biomass under mild conditions,without the need for additional reagents.
基金Financial supports from the National Natural Science Foundation of China(Nos.52171116,U22A20109,52334010 and T2325013)are greatly acknowledgedPartial financial support came from The Program for the Central University Youth Innovation Team,and the Fundamental Research Funds for the Central Universities,JLU.
文摘Dislocations and disclinations are fundamental topological defects within crystals,which determine the mechanical properties of metals and alloys.Despite their important roles in multiple physical mechanisms,e.g.,dynamic recovery and grain boundary mediated plasticity,the intrinsic coupling and correlation between disclinations and dislocations,and their impacts on the deformation behavior of metallic materials still remain obscure,partially due to the lack of a theoretical tool to capture the rotational nature of disclinations.By using a Lie-algebra-based theoretical framework,we obtain a general equation to quantify the intrinsic coupling of disclinations and dislocations.Through quasi in-situ electron backscatter diffraction characterizations and disclination/dislocation density analyses in Mg alloys,the generation,coevolution and reactions of disclinations and dislocations during dynamic recovery and superplastic deformation have been quantitatively analyzed.It has been demonstrated that the obtained governing equation can capture multiple physical processes associated with mechanical deformation of metals,e.g.,grain rotation and grain boundary migration,at both room temperature and high temperature.By establishing the disclination-dislocation coupling equation within a Lie algebra description,our work provides new insights for exploring the coevolution and reaction of disclinations/dislocations,with profound implications for elucidating the microstructure-property relationship and underlying deformation mechanisms in metallic materials.
基金supported by the National Natural Science Foundation of China(Nos.52222110,52401354,and 52301353).
文摘As the main geomaterials for coral reefs oil or gas extraction and underground infrastructure construction,coral reef limestone demonstrates significantly distinct mechanical responses compared to terrigenous rocks.To investigate the mechanical behaviour of coral reef limestone under the coupling impact of size and strain rate,the uniaxial compression tests were conducted on reef limestone samples with length-to-diameter(L/D)ratio ranging from 0.5 to 2.0 at strain rate ranging from 10^(−5)·s^(−1)to 10^(−2)·s^(−1).It is revealed that the uniaxial compressive strength(UCS)and residual compressive strength(RCS)of coral reef limestone exhibits a decreasing trend with L/D ratio increasing.The dynamic increase factor(DIF)of UCS is linearly correlated with the logarithm of strain rate,while increasing the L/D ratio further enhances the DIF.The elastic modulus increases with strain rate or L/D ratio increasing,whereas the Poisson’s ratio approximates to a constant value of 0.24.The failure strain increases with strain rate increasing or L/D ratio decreasing,while the increase in L/D ratio will inhibit the enhancing effect of the strain rate.The high porosity and low mineral strength are the primary factors contributing to a high RCS of 16.7%–64.9%of UCS,a lower brittleness index and multiple irregular fracture planes.The failure pattern of coral reef limestone transits from the shear-dominated to the splitting-dominated failure with strain rate increasing or L/D ratio decreasing,which is mainly governed by the constrained zones induced by end friction and the strain rate-dependent crack propagation.Moreover,a predictive formula incorporating coupling effect of size and strain rate for the UCS of reef limestone was established and verified to effectively capture the trend of UCS.
基金supported by Sichuan Science and Technology Program(Grant No.2020YFH0080)the National Natural Science Foundation of China(Grant No.51475386)the National Basic Research Project of China(973 Program,Grant No.2015CB654801).
文摘The gear transmission system directly affects the operational performance of high-speed trains(HST).However,current research on gear transmission systems of HST often overlooks the effects of gear eccentricity and running resistance,and the dynamic models of gear transmission system are not sufficiently comprehensive.This paper aims to establish an electromechanical coupling dynamic model of HST traction transmission system and study its electromechanical coupling vibration characteristics,in which the internal excitation factors such as gear eccentricity,time-varying meshing stiffness,backlash,meshing error,and external excitation factors such as electromagnetic torque and running resistance are stressed.The research results indicate that gear eccentricity and running resistance have a significant impact on the stability of the system,and gear eccentricity leads to intensified system vibration and decreased anti-interference ability.In addition,the characteristic frequency of gear eccentricity can be extracted from mechanical signals and current signals as a preliminary basis for eccentricity detection,and electrical signals can also be used to monitor changes in train running resistance in real time.The results of this study provide some useful insights into designing dynamic performance parameters for HST transmission systems and monitoring train operational states.
基金supported by the financial aid from the National Natural Science Foundation of China (No. 22271273)International Partnership Program of Chinese Academy of Sciences (No. 121522KYSB20190022)。
文摘Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic structure. In this work, Sb^(3+)/Te^(4+)ions doped Zn-based halide single crystals(SCs) with two STEs emissions have been synthesized and the possibility of its anti-counterfeiting application was explored.Further, the relationship between the strength of electron-phonon coupling and photoluminescence quantum yields(PLQYs) for STEs in a series of metal halides has been studied. And the semi-empirical range of the Huang-Rhys factors(S) for metal halides with excellent photoluminescence(PL) property has been summarized. This work provides ideas for further research into the relationship between luminescence performance and electron-phonon coupling of metal halides, and also provides a reference for designing the metal halides with high PLQYs.
基金the support provided by the National Natural Science Foundation of China(Grant Nos.52278336 and 42302032)Guangdong Basic and Applied Research Foundation(Grant Nos.2023B1515020061).
文摘Granite residual soil (GRS) is a type of weathering soil that can decompose upon contact with water, potentially causing geological hazards. In this study, cement, an alkaline solution, and glass fiber were used to reinforce GRS. The effects of cement content and SiO_(2)/Na2O ratio of the alkaline solution on the static and dynamic strengths of GRS were discussed. Microscopically, the reinforcement mechanism and coupling effect were examined using X-ray diffraction (XRD), micro-computed tomography (micro-CT), and scanning electron microscopy (SEM). The results indicated that the addition of 2% cement and an alkaline solution with an SiO_(2)/Na2O ratio of 0.5 led to the densest matrix, lowest porosity, and highest static compressive strength, which was 4994 kPa with a dynamic impact resistance of 75.4 kN after adding glass fiber. The compressive strength and dynamic impact resistance were a result of the coupling effect of cement hydration, a pozzolanic reaction of clay minerals in the GRS, and the alkali activation of clay minerals. Excessive cement addition or an excessively high SiO_(2)/Na2O ratio in the alkaline solution can have negative effects, such as the destruction of C-(A)-S-H gels by the alkaline solution and hindering the production of N-A-S-H gels. This can result in damage to the matrix of reinforced GRS, leading to a decrease in both static and dynamic strengths. This study suggests that further research is required to gain a more precise understanding of the effects of this mixture in terms of reducing our carbon footprint and optimizing its properties. The findings indicate that cement and alkaline solution are appropriate for GRS and that the reinforced GRS can be used for high-strength foundation and embankment construction. The study provides an analysis of strategies for mitigating and managing GRS slope failures, as well as enhancing roadbed performance.
基金supported by the National Key R&D Program of China(No.2021YFB2011300)the National Natural Science Foundation of China(Nos.52275044,U2233212)。
文摘The Electro–Hydrostatic Actuator(EHA)is applied to drive the control surface in flightcontrol system of more electric aircraft.In EHA,the Oil-Immersed Motor Pump(OMP)serves asthe core as a power assembly.However,the compact integration of the OMP presents challenges inefficiently dissipating internal heat,leading to a performance degradation of the EHA due to ele-vated temperatures.Therefore,accurately modeling and predicting the internal thermal dynamicsof the OMP hold considerable significance for monitoring the operational condition of the EHA.In view of this,a modeling method considering cumulative thermal coupling was hereby proposed.Based on the proposed method,the thermal models of the motor and the pump were established,taking into account heat accumulation and transfer.Taking the leakage oil as the heat couplingpoint between the motor and the pump,the dynamic thermal coupling model of the OMP wasdeveloped,with the thermal characteristics of the oil considered.Additionally,the comparativeexperiments were conducted to illustrate the efficiency of the proposed model.The experimentalresults demonstrate that the proposed dynamic thermal coupling model accurately captured thethermal behavior of OMP,outperforming the static thermal parameter model.Overall,thisadvancement is crucial for effectively monitoring the health of EHA and ensuring flight safety.
基金financially supported by the National Natural Science Foundation of China(Nos.52073214 and 22075211)Guangxi Natural Science Fund for Distinguished Young Scholars(No.2024GXNSFFA010008)+5 种基金Natural Science Foundation of Shandong Province(Nos.ZR2023MB049 and ZR2021QB129)China Postdoctoral Science Foundation(No.2020M670483)Science Foundation of Weifang University(No.2023BS11)supported by the open research fund of the Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry at Kashi Universitysupported by the Tianhe Qingsuo Open Research Fund of TSYS in 2022 and NSCC-TJNankai University Large-scale Instrument Experimental Technology R&D Project(No.21NKSYJS09)。
文摘Unraveling the essence of electronic structure effected by d-d orbital coupling of transition metal and methanol oxidation reaction(MOR)performance can fundamentally guide high efficient catalyst design.Herein,density functional theory(DFT)calculations were performed at first to study the d–d orbital interaction of metallic Pt Pd Cu,revealing that the incorporation of Pd and Cu atoms into Pt system can enhance d-d electron interaction via capturing antibonding orbital electrons of Pt to fill the surrounding Pd and Cu atoms.Under the theoretical guidance,Pt Pd Cu medium entropy alloy aerogels(Pt Pd Cu MEAAs)catalysts have been designed and systematically screened for MOR under acid,alkaline and neutral electrolyte.Furthermore,DFT calculation and in-situ fourier transform infrared spectroscopy analysis indicate that Pt Pd Cu MEAAs follow the direct pathway via formate as the reactive intermediate to be directly oxidized to CO_(2).For practical direct methanol fuel cells(DMFCs),the Pt Pd Cu MEAAs-integrated ultra-thin catalyst layer(4–5μm thickness)as anode exhibits higher peak power density of 35 m W/cm^(2) than commercial Pt/C of 20 m W/cm^(2)(~40μm thickness)under the similar noble metal loading and an impressive stability retention at a 50-m A/cm^(2) constant current for 10 h.This work clearly proves that optimizing the intermediate adsorption capacity via d-d orbital coupling is an effective strategy to design highly efficient catalysts for DMFCs.