Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finit...Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finite-sized gates such as Clifford + T. Although these logical gate sets allow for universal quantum computation, the finite gate sizes present a problem for quantum sensing, since in sensing protocols, such as the Ramsey measurement protocol, the signal must act continuously. The difficulty in constructing a continuous logical op-erator comes from the Eastin-Knill theorem, which prevents a continuous sig-nal from being both fault-tolerant to local errors and transverse. Since error correction is needed to approach the Heisenberg Limit in a noisy environment, it is important to explore how to construct fault-tolerant continuous operators. In this paper, a protocol to design continuous logical z-rotations is proposed and applied to the Steane Code. The fault tolerance of the designed operator is investigated using the Knill-Laflamme conditions. The Knill-Laflamme condi-tions indicate that the diagonal unitary operator constructed cannot be fault tolerant solely due to the possibilities of X errors on the middle qubit. The ap-proach demonstrated throughout this paper may, however, find success in codes with more qubits such as the Shor code, distance 3 surface code, [15, 1, 3] code, or codes with a larger distance such as the [11, 1, 5] code.展开更多
Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation o...Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation of the PLANAR algorithm,a software framework designed for fast and exact decoding of quantum codes with a planar structure.The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model.Then it utilizes the exact Kac–Ward formula to solve it.In this way,PLANAR offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure,including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise.Unlike traditional minimumweight decoders such as minimum-weight perfect matching(MWPM),PLANAR achieves theoretically optimal performance while maintaining polynomial-time efficiency.In addition,to demonstrate its capabilities,we exemplify the implementation using the rotated surface code,a commonly used quantum error correction code with a planar structure,and show that PLANAR achieves a threshold of approximately p_(uc)≈0.109 under the depolarizing error model,with a time complexity scaling of O(N^(0.69)),where N is the number of spins in the Ising model.展开更多
Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in cu...Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.展开更多
In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that th...In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that the flow-dependent model prediction errors are to some degree similar under analogous historical climate states, and so the historical errors can be used to effectively reduce such flow-dependent errors. With this method, the unknown errors in current ENSO predictions can be empirically estimated by using the known prediction errors which are diagnosed by the same model based on historical analogue states. The authors first propose the basic idea for applying the ACE method to ENSO prediction and then establish an analogue-dynamical ENSO prediction system based on an operational climate prediction model. The authors present some experimental results which clearly show the possibility of correcting the flow-dependent errors in ENSO prediction, and thus the potential of applying the ACE method to operational ENSO prediction based on climate models.展开更多
In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can eff...In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model.展开更多
Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible w...Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.展开更多
Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tens...Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tensor, field differentiation is generally approximated by field difference. As a result, magnetic objects positioning by magnetic field gradient tensor measurement always involves an inherent error caused by sensor sizes, leading to a reduction in detectable distance and detectable angle. In this paper, the inherent positioning error caused by magnetic field gradient tensor measurement is calculated and corrected by iterations based on the systematic position error distribution patterns. The results show that, the detectable distance range and the angle range of an ac magnetic object(2.44 Am^2@1 kHz) can be increased from(0.45 m, 0.75 m),(0?, 25?) to(0.30 m, 0.80 m),(0?,80?), respectively.展开更多
In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical mod...In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical model of the hypoid gears machined by the duplex helical method was established.Second,the coordinates of discrete points on the tooth surface were obtained by measurement center,and the normal errors of the discrete points were calculated.Third,a tooth surface error correction model is established,and the tooth surface error was corrected using the Levenberg-Marquard algorithm with trust region strategy and least square method.Finally,grinding experiments were carried out on the machining parameters obtained by Levenberg-Marquard algorithm with trust region strategy,which had a better effect on tooth surface error correction than the least square method.After the tooth surface error is corrected,the maximum absolute error is reduced from 30.9μm before correction to 6.8μm,the root mean square of the concave error is reduced from 15.1 to 2.1μm,the root mean square of the convex error is reduced from 10.8 to 1.8μm,and the sum of squared errors of the concave and convex surfaces was reduced from 15471 to 358μm^(2).It is verified that the Levenberg-Marquard algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined by duplex helical method.展开更多
Aiming at the yaw problem caused by inertial navigation system errors accumulation during the navigation of an intelligent aircraft,a three-dimensional trajectory planning method based on the particle swarm optimizati...Aiming at the yaw problem caused by inertial navigation system errors accumulation during the navigation of an intelligent aircraft,a three-dimensional trajectory planning method based on the particle swarm optimization-A star(PSO-A*)algorithm is designed.Firstly,an environment model for aircraft error correction is established,and the trajectory is discretized to calculate the positioning error.Next,the positioning error is corrected at many preset trajectory points.The shortest trajectory and the fewest correction times are regarded as optimization goals to improve the heuristic function of A star(A*)algorithm.Finally,the index weights are continuously optimized by the particle swarm optimization algorithm.The optimal trajectory is found by the A*algorithm under the current evaluation index,so the ideal trajectory is planned.The experimental results show that the PSO-A*algorithm can quickly search for ideal trajectories in different environment models,indicating that the algorithm has certain feasibility and adaptability,and verifies the rationality of the proposed trajectory planning model.The PSO-A*algorithm has better convergence accuracy than the A*algorithm,and the search efficiency is significantly better than the grid search A star(GS-A*)algorithm.The PSO-A*algorithm proposed in this paper has certain engineering application value.The researchers will study the real-time and systematic nature of the algorithm.展开更多
Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use o...Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use of the vertical section information, it does not agree with the actual propagation path. The atmospheric refraction error correction method of the Longley-Rice channel model has been improved. The improved method makes use of the vertical section information sufficiently and maps the distance between the receiver and transmitter to the radio wave propagation distance, It can exactly reflect the infection of propagation distance for the radio wave propagation loss. It is predicted to be more close to the experimental results by simulation in comparison with the measured data. The effectiveness of improved methods is proved by simulation.展开更多
Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy...Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy intermediate-scale quantum(NISQ)era,noise presents in these systems and is too high for error correction to be beneficial.Quantum error mitigation is a set of alternative methods for minimizing errors,including error extrapolation,probabilistic error cancella-tion,measurement error mitigation,subspace expansion,symmetry verification,virtual distillation,etc.The requirement for these methods is usually less demanding than error correction.Quantum error mitigation is a promising way of reduc-ing errors on NISQ quantum computers.This paper gives a comprehensive introduction to quantum error mitigation.The state-of-art error mitigation methods are covered and formulated in a general form,which provides a basis for comparing,combining and optimizing different methods in future work.展开更多
The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(...The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(REs) has proven to be effective to monitor and avoid the occurrence of severe side reactions like Li plating to ensure the safe and fast charging. However, the intrinsic measurement errors caused by local blocking effects, which also can be referred to as potential artefacts, are seldom taken into consideration in existing studies, yet they highly dominate the correctness of conclusions inferred from REs. In this study, aiming at exploring the physical origin of the measurement errors and ensure reliable potential monitoring, electrochemical and post-mortem tests are conducted using commercial pouch cells with implanted REs. Corresponding electrochemical model which describes the blocking effects, is established to validate the abnormal absence of lithium plating that predicted by measured anode potentials under various charging rates. Theoretical derivation is further presented to explain the error sources, which can be attributed to increased local liquid potential of the RE position. Most importantly, with the guidance of error analysis, a novel parameter-independent error correction method for RE measurements is proposed for the first time, which is proven to be adequate to estimate the real anode potentials and deduce the critical C-rate of Li plating with extra safety margin. After error correction, the resulting critical C-rates are all within the range of 0.55 ± 0.03 C, which is close to the C-rate of 0.6–0.7 C obtained from experiments. In addition, this error correction method can be performed conveniently with only some simple RE measurements of polarization voltages, totally independent of battery electrochemical and geometric parameters. This study provides highly practical error correction method for RE measurements in real LIBs, substantially facilitating the fast diagnosis and safety evaluation of Li plating during charging of LIBs.展开更多
In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned acco...In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned according to three teaching points, which is lapped head on end to satisfy the requirement of technology. For the nipples wherever they are arranged radially or axially, even if there are errors caused by positioning and thermal deformations, providing that nipple's position and orientation relative to the teaching one can be measured, the multi path/multi layer circular locus can be planned without teaching any more. The algorithm has been applied in welding robot for manufacturing power station' boiler.展开更多
For applying the perfect code to transmit quantum information over a noise channel,the standard protocol contains four steps:the encoding,the noise channel,the error-correction operation,and the decoding.In present wo...For applying the perfect code to transmit quantum information over a noise channel,the standard protocol contains four steps:the encoding,the noise channel,the error-correction operation,and the decoding.In present work,we show that this protocol can be simplified.The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation.We also offer a quantum circuit,which can correct the arbitrary single-qubit errors.展开更多
Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum err...Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.展开更多
In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of p...In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows: adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node. When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 30%.展开更多
Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting ...Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.展开更多
Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability st...Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability statistics in order to analyze, predict, reduce and prevent human errors. Firstly, the quantitative analysis model of HRA is proposed based on Markov process theory by using human error probability(HEP) and error correction cycle(ECC) as parameters. And human reliability evaluation criterion is built. Then, the HRA process considering error correction is proposed based on cognitive reliability and error analysis method(CREAM). Finally, according to the characteristics of armored vehicle system, common performance condition(CPC) in CREAM is improved.A reliability impact index is characterized by the overall contexts of tasks. Human reliability evaluation criterion of armored vehicle system is formulated. And the result of HRA is obtained based on the method presented in this paper. In addition, the relative weights are estimated by combining scale of 10/10—18/2 and analytical hierarchy process(AHP), and the triangular fuzzy number considering confidence factor and optimism index is adopted in order to reduce the subjectivity. The analysis results show that the method presented in this paper is reasonable and feasible. Meantime, the method can provide guidance for human reliability analysis of other weapon systems.展开更多
文摘Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finite-sized gates such as Clifford + T. Although these logical gate sets allow for universal quantum computation, the finite gate sizes present a problem for quantum sensing, since in sensing protocols, such as the Ramsey measurement protocol, the signal must act continuously. The difficulty in constructing a continuous logical op-erator comes from the Eastin-Knill theorem, which prevents a continuous sig-nal from being both fault-tolerant to local errors and transverse. Since error correction is needed to approach the Heisenberg Limit in a noisy environment, it is important to explore how to construct fault-tolerant continuous operators. In this paper, a protocol to design continuous logical z-rotations is proposed and applied to the Steane Code. The fault tolerance of the designed operator is investigated using the Knill-Laflamme conditions. The Knill-Laflamme condi-tions indicate that the diagonal unitary operator constructed cannot be fault tolerant solely due to the possibilities of X errors on the middle qubit. The ap-proach demonstrated throughout this paper may, however, find success in codes with more qubits such as the Shor code, distance 3 surface code, [15, 1, 3] code, or codes with a larger distance such as the [11, 1, 5] code.
基金supported by the National Natural Science Foundation of China(Grant Nos.12325501,12047503,and 12247104)the Chinese Academy of Sciences(Grant No.ZDRW-XX-2022-3-02)P.Z.is partially supported by the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301900).
文摘Quantum error correction is essential for realizing fault-tolerant quantum computing,where both the efficiency and accuracy of the decoding algorithms play critical roles.In this work,we introduce the implementation of the PLANAR algorithm,a software framework designed for fast and exact decoding of quantum codes with a planar structure.The algorithm first converts the optimal decoding of quantum codes into a partition function computation problem of an Ising spin glass model.Then it utilizes the exact Kac–Ward formula to solve it.In this way,PLANAR offers the exact maximum likelihood decoding in polynomial complexity for quantum codes with a planar structure,including the surface code with independent code-capacity noise and the quantum repetition code with circuit-level noise.Unlike traditional minimumweight decoders such as minimum-weight perfect matching(MWPM),PLANAR achieves theoretically optimal performance while maintaining polynomial-time efficiency.In addition,to demonstrate its capabilities,we exemplify the implementation using the rotated surface code,a commonly used quantum error correction code with a planar structure,and show that PLANAR achieves a threshold of approximately p_(uc)≈0.109 under the depolarizing error model,with a time complexity scaling of O(N^(0.69)),where N is the number of spins in the Ising model.
基金Project supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province(Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)the Key R&D Program of Shandong Province,China(Grant No.2023CXGC010901)。
文摘Quantum computing has the potential to solve complex problems that are inefficiently handled by classical computation.However,the high sensitivity of qubits to environmental interference and the high error rates in current quantum devices exceed the error correction thresholds required for effective algorithm execution.Therefore,quantum error correction technology is crucial to achieving reliable quantum computing.In this work,we study a topological surface code with a two-dimensional lattice structure that protects quantum information by introducing redundancy across multiple qubits and using syndrome qubits to detect and correct errors.However,errors can occur not only in data qubits but also in syndrome qubits,and different types of errors may generate the same syndromes,complicating the decoding task and creating a need for more efficient decoding methods.To address this challenge,we used a transformer decoder based on an attention mechanism.By mapping the surface code lattice,the decoder performs a self-attention process on all input syndromes,thereby obtaining a global receptive field.The performance of the decoder was evaluated under a phenomenological error model.Numerical results demonstrate that the decoder achieved a decoding accuracy of 93.8%.Additionally,we obtained decoding thresholds of 5%and 6.05%at maximum code distances of 7 and 9,respectively.These results indicate that the decoder used demonstrates a certain capability in correcting noise errors in surface codes.
基金supported by the Integration and Application Project for Key Meteorology Techniques in China Meteorological Administration (Grant No. CMAGJ2014M64)the China Meteorological Special Project (Grant No. GYHY2012 06016)the National Basic Research Program of China (973 Program, Grant No. 2010CB950404)
文摘In this study, a method of analogue-based correction of errors(ACE) was introduced to improve El Ni?o-Southern Oscillation(ENSO) prediction produced by climate models. The ACE method is based on the hypothesis that the flow-dependent model prediction errors are to some degree similar under analogous historical climate states, and so the historical errors can be used to effectively reduce such flow-dependent errors. With this method, the unknown errors in current ENSO predictions can be empirically estimated by using the known prediction errors which are diagnosed by the same model based on historical analogue states. The authors first propose the basic idea for applying the ACE method to ENSO prediction and then establish an analogue-dynamical ENSO prediction system based on an operational climate prediction model. The authors present some experimental results which clearly show the possibility of correcting the flow-dependent errors in ENSO prediction, and thus the potential of applying the ACE method to operational ENSO prediction based on climate models.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 40575036 and 40325015).Acknowledgement The authors thank Drs Zhang Pei-Qun and Bao Ming very much for their valuable comments on the present paper.
文摘In this paper, an analogue correction method of errors (ACE) based on a complicated atmospheric model is further developed and applied to numerical weather prediction (NWP). The analysis shows that the ACE can effectively reduce model errors by combining the statistical analogue method with the dynamical model together in order that the information of plenty of historical data is utilized in the current complicated NWP model, Furthermore, in the ACE, the differences of the similarities between different historical analogues and the current initial state are considered as the weights for estimating model errors. The results of daily, decad and monthly prediction experiments on a complicated T63 atmospheric model show that the performance of the ACE by correcting model errors based on the estimation of the errors of 4 historical analogue predictions is not only better than that of the scheme of only introducing the correction of the errors of every single analogue prediction, but is also better than that of the T63 model.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11834010,11804001,and 11904160)the Natural Science Foundation of Anhui Province,China(Grant No.1808085QA11)+1 种基金the Program of Youth Sanjin Scholar,National Key R&D Program of China(Grant No.2016YFA0301402)the Fund for Shanxi"1331 Project"Key Subjects Construction.
文摘Measurement-based quantum computation with continuous variables,which realizes computation by performing measurement and feedforward of measurement results on a large scale Gaussian cluster state,provides a feasible way to implement quantum computation.Quantum error correction is an essential procedure to protect quantum information in quantum computation and quantum communication.In this review,we briefly introduce the progress of measurement-based quantum computation and quantum error correction with continuous variables based on Gaussian cluster states.We also discuss the challenges in the fault-tolerant measurement-based quantum computation with continuous variables.
基金supported by the National Natural Science Foundation of China(61473023)
文摘Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tensor, field differentiation is generally approximated by field difference. As a result, magnetic objects positioning by magnetic field gradient tensor measurement always involves an inherent error caused by sensor sizes, leading to a reduction in detectable distance and detectable angle. In this paper, the inherent positioning error caused by magnetic field gradient tensor measurement is calculated and corrected by iterations based on the systematic position error distribution patterns. The results show that, the detectable distance range and the angle range of an ac magnetic object(2.44 Am^2@1 kHz) can be increased from(0.45 m, 0.75 m),(0?, 25?) to(0.30 m, 0.80 m),(0?,80?), respectively.
基金Projects(52075552,51575533,51805555,11662004)supported by the National Natural Science Foundation of China。
文摘In this work,synchronous cutting of concave and convex surfaces was achieved using the duplex helical method for the hypoid gear,and the problem of tooth surface error correction was studied.First,the mathematical model of the hypoid gears machined by the duplex helical method was established.Second,the coordinates of discrete points on the tooth surface were obtained by measurement center,and the normal errors of the discrete points were calculated.Third,a tooth surface error correction model is established,and the tooth surface error was corrected using the Levenberg-Marquard algorithm with trust region strategy and least square method.Finally,grinding experiments were carried out on the machining parameters obtained by Levenberg-Marquard algorithm with trust region strategy,which had a better effect on tooth surface error correction than the least square method.After the tooth surface error is corrected,the maximum absolute error is reduced from 30.9μm before correction to 6.8μm,the root mean square of the concave error is reduced from 15.1 to 2.1μm,the root mean square of the convex error is reduced from 10.8 to 1.8μm,and the sum of squared errors of the concave and convex surfaces was reduced from 15471 to 358μm^(2).It is verified that the Levenberg-Marquard algorithm with trust region strategy has a good accuracy for the tooth surface error correction of hypoid gear machined by duplex helical method.
文摘Aiming at the yaw problem caused by inertial navigation system errors accumulation during the navigation of an intelligent aircraft,a three-dimensional trajectory planning method based on the particle swarm optimization-A star(PSO-A*)algorithm is designed.Firstly,an environment model for aircraft error correction is established,and the trajectory is discretized to calculate the positioning error.Next,the positioning error is corrected at many preset trajectory points.The shortest trajectory and the fewest correction times are regarded as optimization goals to improve the heuristic function of A star(A*)algorithm.Finally,the index weights are continuously optimized by the particle swarm optimization algorithm.The optimal trajectory is found by the A*algorithm under the current evaluation index,so the ideal trajectory is planned.The experimental results show that the PSO-A*algorithm can quickly search for ideal trajectories in different environment models,indicating that the algorithm has certain feasibility and adaptability,and verifies the rationality of the proposed trajectory planning model.The PSO-A*algorithm has better convergence accuracy than the A*algorithm,and the search efficiency is significantly better than the grid search A star(GS-A*)algorithm.The PSO-A*algorithm proposed in this paper has certain engineering application value.The researchers will study the real-time and systematic nature of the algorithm.
文摘Longley-Rice channel model modifies the atmospheric refraction by the equivalent earth radius method, which is simple calculation but is not accurate. As it only uses the horizontal difference, but does not make use of the vertical section information, it does not agree with the actual propagation path. The atmospheric refraction error correction method of the Longley-Rice channel model has been improved. The improved method makes use of the vertical section information sufficiently and maps the distance between the receiver and transmitter to the radio wave propagation distance, It can exactly reflect the infection of propagation distance for the radio wave propagation loss. It is predicted to be more close to the experimental results by simulation in comparison with the measured data. The effectiveness of improved methods is proved by simulation.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.11875050 and 12088101)NSAF(Grant No.U1930403).
文摘Minimizing the effect of noise is essential for quantum computers.The conventional method to protect qubits against noise is through quantum error correction.However,for current quantum hardware in the so-called noisy intermediate-scale quantum(NISQ)era,noise presents in these systems and is too high for error correction to be beneficial.Quantum error mitigation is a set of alternative methods for minimizing errors,including error extrapolation,probabilistic error cancella-tion,measurement error mitigation,subspace expansion,symmetry verification,virtual distillation,etc.The requirement for these methods is usually less demanding than error correction.Quantum error mitigation is a promising way of reduc-ing errors on NISQ quantum computers.This paper gives a comprehensive introduction to quantum error mitigation.The state-of-art error mitigation methods are covered and formulated in a general form,which provides a basis for comparing,combining and optimizing different methods in future work.
基金supported by the Ministry of Science and Technology of China(2019YFE0100200)funded by the National Natural Science Foundation of China(51807108,51877121,52037006)。
文摘The safety monitoring of lithium-ion batteries(LIBs) is of great significance for realizing all-climate and full-lifespan battery management. In-situ measurement of anode potential with implanted reference electrodes(REs) has proven to be effective to monitor and avoid the occurrence of severe side reactions like Li plating to ensure the safe and fast charging. However, the intrinsic measurement errors caused by local blocking effects, which also can be referred to as potential artefacts, are seldom taken into consideration in existing studies, yet they highly dominate the correctness of conclusions inferred from REs. In this study, aiming at exploring the physical origin of the measurement errors and ensure reliable potential monitoring, electrochemical and post-mortem tests are conducted using commercial pouch cells with implanted REs. Corresponding electrochemical model which describes the blocking effects, is established to validate the abnormal absence of lithium plating that predicted by measured anode potentials under various charging rates. Theoretical derivation is further presented to explain the error sources, which can be attributed to increased local liquid potential of the RE position. Most importantly, with the guidance of error analysis, a novel parameter-independent error correction method for RE measurements is proposed for the first time, which is proven to be adequate to estimate the real anode potentials and deduce the critical C-rate of Li plating with extra safety margin. After error correction, the resulting critical C-rates are all within the range of 0.55 ± 0.03 C, which is close to the C-rate of 0.6–0.7 C obtained from experiments. In addition, this error correction method can be performed conveniently with only some simple RE measurements of polarization voltages, totally independent of battery electrochemical and geometric parameters. This study provides highly practical error correction method for RE measurements in real LIBs, substantially facilitating the fast diagnosis and safety evaluation of Li plating during charging of LIBs.
文摘In this paper, a planning algorithm for multi path/multi layer circular locus is poposed. The algorithm is applied to weld the nipples on the header of boiler. Multi path/multi layer circular locus is planned according to three teaching points, which is lapped head on end to satisfy the requirement of technology. For the nipples wherever they are arranged radially or axially, even if there are errors caused by positioning and thermal deformations, providing that nipple's position and orientation relative to the teaching one can be measured, the multi path/multi layer circular locus can be planned without teaching any more. The algorithm has been applied in welding robot for manufacturing power station' boiler.
文摘For applying the perfect code to transmit quantum information over a noise channel,the standard protocol contains four steps:the encoding,the noise channel,the error-correction operation,and the decoding.In present work,we show that this protocol can be simplified.The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation.We also offer a quantum circuit,which can correct the arbitrary single-qubit errors.
基金the National Natural Science Foundation of China(Grant Nos.11975132 and 61772295)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2019YQ01)the Project of Shandong Province Higher Educational Science and Technology Program,China(Grant No.J18KZ012).
文摘Quantum error correction technology is an important solution to solve the noise interference generated during the operation of quantum computers.In order to find the best syndrome of the stabilizer code in quantum error correction,we need to find a fast and close to the optimal threshold decoder.In this work,we build a convolutional neural network(CNN)decoder to correct errors in the toric code based on the system research of machine learning.We analyze and optimize various conditions that affect CNN,and use the RestNet network architecture to reduce the running time.It is shortened by 30%-40%,and we finally design an optimized algorithm for CNN decoder.In this way,the threshold accuracy of the neural network decoder is made to reach 10.8%,which is closer to the optimal threshold of about 11%.The previous threshold of 8.9%-10.3%has been slightly improved,and there is no need to verify the basic noise.
基金Projects(2003CB314802) supported by the State Key Fundamental Research and Development Programof China project(90104001) supported by the National Natural Science Foundation of China
文摘In order to improve the data transmission reliability of mobile ad hoc network, a routing scheme called integrated forward error correction multipath routing protocol was proposed, which integrates the techniques of packet fragmenting and forward error correction encoding into multipath routing. The scheme works as follows: adding a certain redundancy into the original packets; fragmenting the resulting packets into exclusive blocks of the same size; encoding with the forward error correction technique, and then sending them to the destination node. When the receiving end receives a certain amount of information blocks, the original information will be recovered even with partial loss. The performance of the scheme was evaluated using OPNET modeler. The experimental results show that with the method the average transmission delay is decreased by 20% and the transmission reliability is increased by 30%.
基金the Gansu Province Soft Scientific Research Projects(No.2015GS06516)the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China(No.J201304)。
文摘Predicting wind speed accurately is essential to ensure the stability of the wind power system and improve the utilization rate of wind energy.However,owing to the stochastic and intermittent of wind speed,predicting wind speed accurately is difficult.A new hybrid deep learning model based on empirical wavelet transform,recurrent neural network and error correction for short-term wind speed prediction is proposed in this paper.The empirical wavelet transformation is applied to decompose the original wind speed series.The long short term memory network and the Elman neural network are adopted to predict low-frequency and high-frequency wind speed sub-layers respectively to balance the calculation efficiency and prediction accuracy.The error correction strategy based on deep long short term memory network is developed to modify the prediction errors.Four actual wind speed series are utilized to verify the effectiveness of the proposed model.The empirical results indicate that the method proposed in this paper has satisfactory performance in wind speed prediction.
基金the Technical Basis Projects of China’s Ministry of Industry and Information Technology(No.ZQ092012B003)
文摘Human reliability analysis(HRA) is an expansion of man-machine engineering. It is also a new multidisciplinary based on behavioral science, cognitive science, information processing, system analysis and probability statistics in order to analyze, predict, reduce and prevent human errors. Firstly, the quantitative analysis model of HRA is proposed based on Markov process theory by using human error probability(HEP) and error correction cycle(ECC) as parameters. And human reliability evaluation criterion is built. Then, the HRA process considering error correction is proposed based on cognitive reliability and error analysis method(CREAM). Finally, according to the characteristics of armored vehicle system, common performance condition(CPC) in CREAM is improved.A reliability impact index is characterized by the overall contexts of tasks. Human reliability evaluation criterion of armored vehicle system is formulated. And the result of HRA is obtained based on the method presented in this paper. In addition, the relative weights are estimated by combining scale of 10/10—18/2 and analytical hierarchy process(AHP), and the triangular fuzzy number considering confidence factor and optimism index is adopted in order to reduce the subjectivity. The analysis results show that the method presented in this paper is reasonable and feasible. Meantime, the method can provide guidance for human reliability analysis of other weapon systems.