Most current lattice Boltzmann (LBM) models suffer from the deficiency that their parameters have to be obtained by fitting experimental results. In this paper, we propose a new method that integrates the molecular ...Most current lattice Boltzmann (LBM) models suffer from the deficiency that their parameters have to be obtained by fitting experimental results. In this paper, we propose a new method that integrates the molecular dynamics (MD) simulation and LBM to avoid such defect. The basic idea is to first construct a molecular model based on the actual components of the rock-fluid system, then to compute the interaction force between the rock and the fluid of different densities through the MD simulation. This calculated rock-fluid interaction force, combined with the fluid-fluid force determined from the equation of state, is then used in LBM modeling. Without parameter fitting, this study presents a new systematic approach for pore-scale modeling of multi-phase flow. We have validated this ap- proach by simulating a two-phase separation process and gas-liquid-solid three-phase contact angle. Based on an actual X-ray CT image of a reservoir core, we applied our workflow to calculate the absolute permeability of the core, vapor-liquid H20 relative permeability, and capillary pressure curves.展开更多
Combined with NMR,core experiment,slim-tube tests,nano-CT and oil composition analysis,the mechanism of CO(2) enhanced oil recovery had been studied.CO_(2) flooding under supercritical state could achieve higher oil r...Combined with NMR,core experiment,slim-tube tests,nano-CT and oil composition analysis,the mechanism of CO(2) enhanced oil recovery had been studied.CO_(2) flooding under supercritical state could achieve higher oil recovery.In the process of crude oil displaced by supercritical CO2,the average oil recovery was 46.98% at low displacement pressures and 73.35% at high displacement pressures.The permeability of cores after CO2 flooding was only 28%-64% of those before flooding.As to the expelled oil,the contents of asphaltenes and non-hydrocarbons decreased,and saturated hydrocarbons of above C25 were absent in some samples,indicating that they had been retained in cores as demonstrated by CT and NMR experiments.In slim-tube tests,the heavy components of oil were expelled when the pressure increased to 30 MPa.There was a reasonable bottom hole pressure(BHP) below which the heavy components driven out from the far-well zone would deposit in the near-well zone,and when the pressure was too high,the nonhydrocarbon detention may cause block.The smaller throat and worse physical properties the porous media had,the higher displacement pressure would be required to achieve a good oil displacement efficiency.The increase in displacement pressure or time of interaction between oil and CO2 could effectively enhance oil recovery.展开更多
To systematically validate and calibrate the theory and technology of the deep in-situ conditionpreserved coring, the in-situ conditions at different depths should be simulated, and the full-size coring tests should b...To systematically validate and calibrate the theory and technology of the deep in-situ conditionpreserved coring, the in-situ conditions at different depths should be simulated, and the full-size coring tests should be carried out in this simulated environment. Therefore, a deep-rock in-situ conditionpreserved coring calibration platform was designed and developed. The self-tightening sealing structure and the quick-disassembly structure were designed on the basis of an innovative segmented nonuniformdiameter structure, which was a breakthrough from the traditional high-pressure vessel frame and was verified by finite element simulation and actual testing under extreme working conditions, respectively.To simulate the actual deep in-situ environment with a temperature of 150℃ and pressure of 140 MPa for a large Φ450 mm×H1400 mm core, temperature and pressure control systems were designed by coupling, and a pre-embedded high-pressure-resistant temperature sensor was designed. Finally, highprecision assembly automation, complex movement coordination of the coring device with the platform,and rotary dynamic sealing were achieved by utilizing the combination of adaptive cabin body servo control and an adaptive mechanical structure in a limited space, laying a solid foundation for the calibration of in-situ condition-preserved coring.展开更多
Natural carbonate core samples with artificial fractures are often used to evaluate the damage of fractured carbonate formations in the laboratory. It is shown that the most frequent error for evaluation results direc...Natural carbonate core samples with artificial fractures are often used to evaluate the damage of fractured carbonate formations in the laboratory. It is shown that the most frequent error for evaluation results directly from the random width characterized by the artificial fractures. To solve this problem, a series of simulated fractured core samples made of stainless steel with a given width of fracture were prepared. The relative error for the width of artificial fracture decreased to 1%. The width of natural and artificial fractures in carbonate reservoirs can be estimated by image log data. A series of tests for formation damage were conducted by using the stainless steel simulated core samples flushed with different drilling fluids, such as the sulfonate/polymer drill-in fluid and the solids-flee drill-in fluid with or without ideal packing bridging materials. Based on the experimental results using this kind of simulated cores, a novel approach to the damage control of fractured carbonate reservoirs was presented. The effective temporary plugging ring on the end face of the simulated core sample can be observed clearly. The experimental results also show that the stainless steel simulated cores made it possible to visualize the solids and filtrate invasion.展开更多
文摘Most current lattice Boltzmann (LBM) models suffer from the deficiency that their parameters have to be obtained by fitting experimental results. In this paper, we propose a new method that integrates the molecular dynamics (MD) simulation and LBM to avoid such defect. The basic idea is to first construct a molecular model based on the actual components of the rock-fluid system, then to compute the interaction force between the rock and the fluid of different densities through the MD simulation. This calculated rock-fluid interaction force, combined with the fluid-fluid force determined from the equation of state, is then used in LBM modeling. Without parameter fitting, this study presents a new systematic approach for pore-scale modeling of multi-phase flow. We have validated this ap- proach by simulating a two-phase separation process and gas-liquid-solid three-phase contact angle. Based on an actual X-ray CT image of a reservoir core, we applied our workflow to calculate the absolute permeability of the core, vapor-liquid H20 relative permeability, and capillary pressure curves.
基金financial support from the National Science and Technology Major Project (2017ZX05013-001, 2017ZX05069003, 2017ZX05049005-004)Ministry of Science and Technology of PetroChina (2021ZZ01-03, kt2021-09-05, 2021DJ1806, 2017E-1514, 2018E-11-05)。
文摘Combined with NMR,core experiment,slim-tube tests,nano-CT and oil composition analysis,the mechanism of CO(2) enhanced oil recovery had been studied.CO_(2) flooding under supercritical state could achieve higher oil recovery.In the process of crude oil displaced by supercritical CO2,the average oil recovery was 46.98% at low displacement pressures and 73.35% at high displacement pressures.The permeability of cores after CO2 flooding was only 28%-64% of those before flooding.As to the expelled oil,the contents of asphaltenes and non-hydrocarbons decreased,and saturated hydrocarbons of above C25 were absent in some samples,indicating that they had been retained in cores as demonstrated by CT and NMR experiments.In slim-tube tests,the heavy components of oil were expelled when the pressure increased to 30 MPa.There was a reasonable bottom hole pressure(BHP) below which the heavy components driven out from the far-well zone would deposit in the near-well zone,and when the pressure was too high,the nonhydrocarbon detention may cause block.The smaller throat and worse physical properties the porous media had,the higher displacement pressure would be required to achieve a good oil displacement efficiency.The increase in displacement pressure or time of interaction between oil and CO2 could effectively enhance oil recovery.
基金supported by National Natural Science Foundation of China(Nos.51827901 and 52225403)the Shenzhen National Science Fund for Distinguished Young Scholars(RCJC20210706091948015).
文摘To systematically validate and calibrate the theory and technology of the deep in-situ conditionpreserved coring, the in-situ conditions at different depths should be simulated, and the full-size coring tests should be carried out in this simulated environment. Therefore, a deep-rock in-situ conditionpreserved coring calibration platform was designed and developed. The self-tightening sealing structure and the quick-disassembly structure were designed on the basis of an innovative segmented nonuniformdiameter structure, which was a breakthrough from the traditional high-pressure vessel frame and was verified by finite element simulation and actual testing under extreme working conditions, respectively.To simulate the actual deep in-situ environment with a temperature of 150℃ and pressure of 140 MPa for a large Φ450 mm×H1400 mm core, temperature and pressure control systems were designed by coupling, and a pre-embedded high-pressure-resistant temperature sensor was designed. Finally, highprecision assembly automation, complex movement coordination of the coring device with the platform,and rotary dynamic sealing were achieved by utilizing the combination of adaptive cabin body servo control and an adaptive mechanical structure in a limited space, laying a solid foundation for the calibration of in-situ condition-preserved coring.
文摘Natural carbonate core samples with artificial fractures are often used to evaluate the damage of fractured carbonate formations in the laboratory. It is shown that the most frequent error for evaluation results directly from the random width characterized by the artificial fractures. To solve this problem, a series of simulated fractured core samples made of stainless steel with a given width of fracture were prepared. The relative error for the width of artificial fracture decreased to 1%. The width of natural and artificial fractures in carbonate reservoirs can be estimated by image log data. A series of tests for formation damage were conducted by using the stainless steel simulated core samples flushed with different drilling fluids, such as the sulfonate/polymer drill-in fluid and the solids-flee drill-in fluid with or without ideal packing bridging materials. Based on the experimental results using this kind of simulated cores, a novel approach to the damage control of fractured carbonate reservoirs was presented. The effective temporary plugging ring on the end face of the simulated core sample can be observed clearly. The experimental results also show that the stainless steel simulated cores made it possible to visualize the solids and filtrate invasion.