为解决现有的事件抽取方法在实体抽取子任务中难以充分利用上下文信息,导致事件抽取精度较低的问题,提出了基于跨度和图卷积网络的篇章级事件抽取(document-level event extraction based on span and graph convolutional network, DEE...为解决现有的事件抽取方法在实体抽取子任务中难以充分利用上下文信息,导致事件抽取精度较低的问题,提出了基于跨度和图卷积网络的篇章级事件抽取(document-level event extraction based on span and graph convolutional network, DEESG)模型。首先,设计中间线性层对编码的向量进行线性处理,并结合标注信息计算最佳跨度,通过提升对跨度开始位置和结束位置判断的准确度来提高实体抽取的精度;接着,提出异构图的构建方法,使用池化策略将实体与句子表示为图的节点,根据提出的建边规则构建异构图,以此建立全局信息的交互,并利用多层图卷积网络(graph convolutional network, GCN)对异构图进行卷积,获得具有上下文信息的实体表示和句子表示,以此解决上下文信息利用不充分的问题;然后,利用多头注意力机制进行事件类型的检测;最后,为组合中的实体分配论元角色,完成事件抽取任务。在中文金融公告(Chinese financial announcements, ChFinAnn)数据集上进行实验。结果表明,与拥有追踪器的异构图交互模型(graph-based interaction model with a tracker, GIT)相比,DEESG模型的F1分数提升了1.3个百分点。该研究证实DEESG模型能有效应用于篇章级事件抽取领域。展开更多
针对现有访问控制模型在高负载情况下性能不足、缺乏对上下文信息的综合考虑等问题,提出一种支持上下文感知的图结构访问控制模型G-RABAC(graph-based role and attribute-based access control)。首先,G-RABAC结合RBAC(role-based acce...针对现有访问控制模型在高负载情况下性能不足、缺乏对上下文信息的综合考虑等问题,提出一种支持上下文感知的图结构访问控制模型G-RABAC(graph-based role and attribute-based access control)。首先,G-RABAC结合RBAC(role-based access control)与ABAC(attribute-based access control)模型,将基于ABAC的访问控制策略可视化为授权图,定义角色间的关系为特殊的主体属性,实现了属性和上下文信息的高效管理。其次,构建了基于G-RABAC的访问控制框架,并设计了基于上下文的访问控制决策算法和风险感知算法,实现了支持多维上下文感知的访问控制。在此基础上,集成区块链和G-RABAC模型,设计了用户身份合法性验证合约,结合Web3.0技术有效监控和处理用户访问行为,提升了访问控制的安全性和透明性。实验结果表明,G-RABAC模型的访问控制效率显著提升,与所选基线方案相比,访问控制时间开销基本维持在230 ms以内,且能够在多用户并发场景中支持安全且细粒度的访问控制,具备更高的灵活性和扩展性。展开更多
随着基于位置的社交网络的快速发展,下一个PoI(point of interest)推荐已成为推荐领域的研究热点。然而现有研究模型忽略了PoI的时空特征以及上下文信息对下一个PoI推荐的效果。针对该问题,提出一种时空上下文感知的下一个PoI推荐方法...随着基于位置的社交网络的快速发展,下一个PoI(point of interest)推荐已成为推荐领域的研究热点。然而现有研究模型忽略了PoI的时空特征以及上下文信息对下一个PoI推荐的效果。针对该问题,提出一种时空上下文感知的下一个PoI推荐方法。首先,利用图注意力网络(GAT)学习包含社交关系的用户表征;并且通过流行度增强二部图神经网络(PEBGNN)学习含有PoI交互偏好的用户表征和PoI表征;同时,利用时空图卷积网络(ST-GCN)学习PoI时空转移偏好的PoI表征;最后,通过融合所学到的用户表征和PoI表征,计算出用户对于各个PoI的预测评分,以此为基础为用户推荐下一个PoI。为了验证该方法的有效性,在Gowalla、Foursquare以及Yelp这三个公开的数据集上进行了测试。实验结果显示,相比于多个基准模型,所提方法在准确率和召回率方面均展现出了显著的优势,分别平均提升28.53%和7.65%。展开更多
文摘为解决现有的事件抽取方法在实体抽取子任务中难以充分利用上下文信息,导致事件抽取精度较低的问题,提出了基于跨度和图卷积网络的篇章级事件抽取(document-level event extraction based on span and graph convolutional network, DEESG)模型。首先,设计中间线性层对编码的向量进行线性处理,并结合标注信息计算最佳跨度,通过提升对跨度开始位置和结束位置判断的准确度来提高实体抽取的精度;接着,提出异构图的构建方法,使用池化策略将实体与句子表示为图的节点,根据提出的建边规则构建异构图,以此建立全局信息的交互,并利用多层图卷积网络(graph convolutional network, GCN)对异构图进行卷积,获得具有上下文信息的实体表示和句子表示,以此解决上下文信息利用不充分的问题;然后,利用多头注意力机制进行事件类型的检测;最后,为组合中的实体分配论元角色,完成事件抽取任务。在中文金融公告(Chinese financial announcements, ChFinAnn)数据集上进行实验。结果表明,与拥有追踪器的异构图交互模型(graph-based interaction model with a tracker, GIT)相比,DEESG模型的F1分数提升了1.3个百分点。该研究证实DEESG模型能有效应用于篇章级事件抽取领域。
文摘针对智能技术难以精准捕捉古汉语文化语境与多义性问题,构建融合知识图谱与深度学习的文化感知型系统。基于《论语》《史记》语料,将Chinese-BERT-wwm-ext微调模型与Neo4j图谱相结合,并通过TransE(Translating Embeddings)嵌入与BiLSTM(Bidirectional Long Short-Term Memory)分类器来实现语义增强。实验设置对照组,结果表明,系统在500句测试集上的语义解析准确率达89.6%,文化关联度达82.1%,歧义消解率为87.4%。在“道”字的解析中,F1值达0.912,较对照组提高了16.9个百分点,表明知识图谱对古汉语深层文化语义的建模具有显著增强效果,有效提升了智能教学工具在文化传承中的语义理解能力。
文摘随着基于位置的社交网络的快速发展,下一个PoI(point of interest)推荐已成为推荐领域的研究热点。然而现有研究模型忽略了PoI的时空特征以及上下文信息对下一个PoI推荐的效果。针对该问题,提出一种时空上下文感知的下一个PoI推荐方法。首先,利用图注意力网络(GAT)学习包含社交关系的用户表征;并且通过流行度增强二部图神经网络(PEBGNN)学习含有PoI交互偏好的用户表征和PoI表征;同时,利用时空图卷积网络(ST-GCN)学习PoI时空转移偏好的PoI表征;最后,通过融合所学到的用户表征和PoI表征,计算出用户对于各个PoI的预测评分,以此为基础为用户推荐下一个PoI。为了验证该方法的有效性,在Gowalla、Foursquare以及Yelp这三个公开的数据集上进行了测试。实验结果显示,相比于多个基准模型,所提方法在准确率和召回率方面均展现出了显著的优势,分别平均提升28.53%和7.65%。