The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a prog...The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a progressive quantum algorithm(PQA)to reduce qubit requirements for QAOA+in solving the maximum independent set(MIS)problem.PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution.Specifically,PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies.After each expansion,PQA solves the MIS problem on the newly generated subgraph using QAOA+.In each run,PQA repeats the expansion and solving process until a predefined stopping condition is reached.Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57%(2.17%)of the qubits and 17.59%(6.43%)of the runtime compared with directly solving the original problem with QAOA+on Erd?s-Rényi(3-regular)graphs,highlighting the efficiency and scalability of PQA.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62371069,62372048,and 62272056)BUPT Excellent Ph.D.Students Foundation(Grant No.CX2023123)。
文摘The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a progressive quantum algorithm(PQA)to reduce qubit requirements for QAOA+in solving the maximum independent set(MIS)problem.PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution.Specifically,PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies.After each expansion,PQA solves the MIS problem on the newly generated subgraph using QAOA+.In each run,PQA repeats the expansion and solving process until a predefined stopping condition is reached.Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57%(2.17%)of the qubits and 17.59%(6.43%)of the runtime compared with directly solving the original problem with QAOA+on Erd?s-Rényi(3-regular)graphs,highlighting the efficiency and scalability of PQA.