A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrain...A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrainfollowing grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future.展开更多
An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several poi...An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several pointwise values within each computational cell as the predicted variables to build high-order schemes based on single-cell reconstruction. Two types of moments, such as the volume-integrated average(VIA) and point value(PV), are defined as constraint conditions to derive the updating formulations of the unknowns, and the constraint condition on VIA guarantees the rigorous conservation of the proposed model. In this study, the MCV scheme is implemented on a height-based, terrainfollowing grid with variable resolution to solve the nonhydrostatic governing equations of atmospheric dynamics. The AMR grid of Berger-Oliger consists of several groups of blocks with different resolutions, where the MCV model developed on a fixed structured mesh can be used directly. Numerical formulations are designed to implement the coarsefine interpolation and the flux correction for properly exchanging the solution information among different blocks. Widely used benchmark tests are carried out to evaluate the proposed model. The numerical experiments on uniform and AMR grids indicate that the adaptive model has promising potential for improving computational efficiency without losing accuracy.展开更多
Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The adva...Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.展开更多
In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence...In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.展开更多
This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-eliminat...This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.展开更多
Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential ...Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential model,with dual and primal evolution versions,which is shown to apply to problems of fluid dynamics,transport phenomena and solid mechanics,among others.In this manner,Uzawa's type methods and penalization-duality schemes,as well as macro-hybrid formulations,are generalized to non necessarily potential nanlinear mechanical problems.展开更多
Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
In this paper, a modified variation of the Limited SQP method is presented for constrained optimization. This method possesses not only the information of gradient but also the information of function value. Moreover,...In this paper, a modified variation of the Limited SQP method is presented for constrained optimization. This method possesses not only the information of gradient but also the information of function value. Moreover, the proposed method requires no more function or derivative evaluations and hardly more storage or arithmetic operations. Under suitable conditions, the global convergence is established.展开更多
In this paper, we present an effective meshless method for solving the inverse heat conduction problems, with the Neumann boundary condition. A PDE-constrained optimization method is developed to get a global approxim...In this paper, we present an effective meshless method for solving the inverse heat conduction problems, with the Neumann boundary condition. A PDE-constrained optimization method is developed to get a global approximation scheme in both spatial and temporal domains, by using the fundamental solution of the governing equation as the basis function.Since the initial measured data contain some noises, and the resulting systems of equations are usually ill-conditioned, the Tikhonov regularization technique with the generalized crossvalidation criterion is applied to obtain more stable numerical solutions. It is shown that the proposed schemes are effective by some numerical tests.展开更多
A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general g...A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general global minimiizing algorithm is employed as a subroutine of the algorithm. The method is expected to tackle a large class of nonsmooth constrained minimization problem.展开更多
A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided proje...A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided projection and the strategy of the unconstrained trust region methods. It keeps the good convergence properties of the unconstrained case and has the merits of the projection method. In some sense, our algorithm can be regarded as an extension and improvement of the projected type algorithm.展开更多
The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear...The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear deformation theory, only considering the shearing deformation of the viscoelastic layer, the integrated first order differential matrix equation of a passive constrained layer damping rotational shell is established by combining with the normal equilibrium equation of the viscoelastic layer.A highly precise transfer matrix method is developed by extended homogeneous capacity precision integration technology.The numerical results show that present method is accurate and effective.展开更多
A new SQP type feasible method for inequality constrained optimization is presented,it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations.The directions of the m...A new SQP type feasible method for inequality constrained optimization is presented,it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations.The directions of the master algorithm are generated by only one quadratic programming, and its step\|size is always one, the directions of the auxiliary algorithm are new “second\|order” feasible descent. Under suitable assumptions,the algorithm is proved to possess global and strong convergence, superlinear and quadratic convergence.展开更多
Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are establi...Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.展开更多
In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm...In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence.展开更多
In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices ou...In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.展开更多
Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal co...Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.展开更多
Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest s...Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest selection mechanism is proposed to integrate the current mutation strategy in constrained optimization problems.Based on the improved pbest selection method,an adaptive differential evolution approach is proposed,which helps the population jump out of the infeasible region.If all the individuals are infeasible,the top 5%of infeasible individuals are selected.In addition,a modified truncatedε-level method is proposed to avoid trapping in infeasible regions.The proposed adaptive differential evolution approach with an improvedεconstraint processmechanism(IεJADE)is examined on CEC 2006 and CEC 2010 constrained benchmark function series.Besides,a standard IEEE-30 bus test system is studied on the efficiency of the IεJADE.The numerical analysis verifies the IεJADE algorithm is effective in comparisonwith other effective algorithms.展开更多
In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the ...In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water.展开更多
基金supported by the National Key Research and Development Program of China (Grant Nos. 2017YFC1501901 and 2017YFA0603901)the Beijing Natural Science Foundation (Grant No. JQ18001)
文摘A 3D compressible nonhydrostatic dynamic core based on a three-point multi-moment constrained finite-volume (MCV) method is developed by extending the previous 2D nonhydrostatic atmospheric dynamics to 3D on a terrainfollowing grid. The MCV algorithm defines two types of moments: the point-wise value (PV) and the volume-integrated average (VIA). The unknowns (PV values) are defined at the solution points within each cell and are updated through the time evolution formulations derived from the governing equations. Rigorous numerical conservation is ensured by a constraint on the VIA moment through the flux form formulation. The 3D atmospheric dynamic core reported in this paper is based on a three-point MCV method and has some advantages in comparison with other existing methods, such as uniform third-order accuracy, a compact stencil, and algorithmic simplicity. To check the performance of the 3D nonhydrostatic dynamic core, various benchmark test cases are performed. All the numerical results show that the present dynamic core is very competitive when compared to other existing advanced models, and thus lays the foundation for further developing global atmospheric models in the near future.
基金supported by The National Key Research and Development Program of China(Grants Nos.2017YFA0603901 and 2017YFC1501901)The National Natural Science Foundation of China(Grant No.41522504)。
文摘An adaptive 2 D nonhydrostatic dynamical core is proposed by using the multi-moment constrained finite-volume(MCV) scheme and the Berger-Oliger adaptive mesh refinement(AMR) algorithm. The MCV scheme takes several pointwise values within each computational cell as the predicted variables to build high-order schemes based on single-cell reconstruction. Two types of moments, such as the volume-integrated average(VIA) and point value(PV), are defined as constraint conditions to derive the updating formulations of the unknowns, and the constraint condition on VIA guarantees the rigorous conservation of the proposed model. In this study, the MCV scheme is implemented on a height-based, terrainfollowing grid with variable resolution to solve the nonhydrostatic governing equations of atmospheric dynamics. The AMR grid of Berger-Oliger consists of several groups of blocks with different resolutions, where the MCV model developed on a fixed structured mesh can be used directly. Numerical formulations are designed to implement the coarsefine interpolation and the flux correction for properly exchanging the solution information among different blocks. Widely used benchmark tests are carried out to evaluate the proposed model. The numerical experiments on uniform and AMR grids indicate that the adaptive model has promising potential for improving computational efficiency without losing accuracy.
文摘Trust region methods are powerful and effective optimization methods. The conic model method is a new type of method with more information available at each iteration than standard quadratic-based methods. The advantages of the above two methods can be combined to form a more powerful method for constrained optimization. The trust region subproblem of our method is to minimize a conic function subject to the linearized constraints and trust region bound. At the same time, the new algorithm still possesses robust global properties. The global convergence of the new algorithm under standard conditions is established.
文摘In this paper, an approximate smoothing approach to the non-differentiable exact penalty function is proposed for the constrained optimization problem. A simple smoothed penalty algorithm is given, and its convergence is discussed. A practical algorithm to compute approximate optimal solution is given as well as computational experiments to demonstrate its efficiency.
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.J50101)
文摘This paper proves that the weighting method via modified Gram-Schmidt(MGS) for solving the equality constrained least squares problem in the limit is equivalent to the direct elimination method via MGS(MGS-elimination method). By virtue of this equivalence, the backward and forward roundoff error analysis of the MGS-elimination method is proved. Numerical experiments are provided to verify the results.
文摘Resolvent methods are presented for generating systematically iterative numerical algorithms for constrained problems in mechanics.The abstract framework corresponds to a general mixed finite element subdif-ferential model,with dual and primal evolution versions,which is shown to apply to problems of fluid dynamics,transport phenomena and solid mechanics,among others.In this manner,Uzawa's type methods and penalization-duality schemes,as well as macro-hybrid formulations,are generalized to non necessarily potential nanlinear mechanical problems.
文摘Dirac's method which itself is for constrained Boson fields and particle systems is followed and developed to treat Dirac fields in light-front coordinates.
文摘In this paper, a modified variation of the Limited SQP method is presented for constrained optimization. This method possesses not only the information of gradient but also the information of function value. Moreover, the proposed method requires no more function or derivative evaluations and hardly more storage or arithmetic operations. Under suitable conditions, the global convergence is established.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1129014311471066+3 种基金11572081)the Fundamental Research of Civil Aircraft(Grant No.MJ-F-2012-04)the Fundamental Research Funds for the Central Universities(Grant No.DUT15LK44)the Scientific Research Funds of Inner Mongolia University for the Nationalities(Grant No.NMD1304)
文摘In this paper, we present an effective meshless method for solving the inverse heat conduction problems, with the Neumann boundary condition. A PDE-constrained optimization method is developed to get a global approximation scheme in both spatial and temporal domains, by using the fundamental solution of the governing equation as the basis function.Since the initial measured data contain some noises, and the resulting systems of equations are usually ill-conditioned, the Tikhonov regularization technique with the generalized crossvalidation criterion is applied to obtain more stable numerical solutions. It is shown that the proposed schemes are effective by some numerical tests.
文摘A kind of nondecreasing subgradient algorithm with appropriate stopping rule has been proposed for nonsmooth constrained minimization problem. The dual theory is invoked in dealing with the stopping rule and general global minimiizing algorithm is employed as a subroutine of the algorithm. The method is expected to tackle a large class of nonsmooth constrained minimization problem.
文摘A class of trust region methods for solving linear inequality constrained problems is proposed in this paper. It is shown that the algorithm is of global convergence.The algorithm uses a version of the two-sided projection and the strategy of the unconstrained trust region methods. It keeps the good convergence properties of the unconstrained case and has the merits of the projection method. In some sense, our algorithm can be regarded as an extension and improvement of the projected type algorithm.
基金supported by the National Natural Science Foundation of China (No.10662003)Educational Commission of Guangxi Province of China (No.200807MS109)
文摘The first order differential matrix equations of the host shell and constrained layer for a sandwich rotational shell are derived based on the thin shell theory.Employing the layer wise principle and first order shear deformation theory, only considering the shearing deformation of the viscoelastic layer, the integrated first order differential matrix equation of a passive constrained layer damping rotational shell is established by combining with the normal equilibrium equation of the viscoelastic layer.A highly precise transfer matrix method is developed by extended homogeneous capacity precision integration technology.The numerical results show that present method is accurate and effective.
基金Supported by the National Natural Science Foundation of China(1 980 1 0 0 9) and by the Natural Sci-ence Foundation of Guangxi
文摘A new SQP type feasible method for inequality constrained optimization is presented,it is a combination of a master algorithm and an auxiliary algorithm which is taken only in finite iterations.The directions of the master algorithm are generated by only one quadratic programming, and its step\|size is always one, the directions of the auxiliary algorithm are new “second\|order” feasible descent. Under suitable assumptions,the algorithm is proved to possess global and strong convergence, superlinear and quadratic convergence.
基金Project supported by the National Natural Science Foundation of China(No.11432010)the Doctoral Program Foundation of Education Ministry of China(No.20126102110023)+2 种基金the 111Project of China(No.B07050)the Fundamental Research Funds for the Central Universities(No.310201401JCQ01001)the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(No.CX201517)
文摘Projected Runge-Kutta (R-K) methods for constrained Hamiltonian systems are proposed. Dynamic equations of the systems, which are index-3 differential-algebraic equations (DAEs) in the Heisenberg form, are established under the framework of Lagrangian multipliers. R-K methods combined with the technique of projections are then used to solve the DAEs. The basic idea of projections is to eliminate the constraint violations at the position, velocity, and acceleration levels, and to preserve the total energy of constrained Hamiltonian systems by correcting variables of the position, velocity, acceleration, and energy. Numerical results confirm the validity and show the high precision of the proposed method in preserving three levels of constraints and total energy compared with results reported in the literature.
文摘In this paper, we proposed a spectral gradient-Newton two phase method for constrained semismooth equations. In the first stage, we use the spectral projected gradient to obtain the global convergence of the algorithm, and then use the final point in the first stage as a new initial point to turn to a projected semismooth asymptotically newton method for fast convergence.
基金The research was supported by the State Education Grant for Retumed Scholars
文摘In this paper we report a sparse truncated Newton algorithm for handling large-scale simple bound nonlinear constrained minimixation problem. The truncated Newton method is used to update the variables with indices outside of the active set, while the projected gradient method is used to update the active variables. At each iterative level, the search direction consists of three parts, one of which is a subspace truncated Newton direction, the other two are subspace gradient and modified gradient directions. The subspace truncated Newton direction is obtained by solving a sparse system of linear equations. The global convergence and quadratic convergence rate of the algorithm are proved and some numerical tests are given.
文摘Iterative methods for solving discrete optimal control problems are constructed and investigated. These discrete problems arise when approximating by finite difference method or by finite element method the optimal control problems which contain a linear elliptic boundary value problem as a state equation, control in the righthand side of the equation or in the boundary conditions, and point-wise constraints for both state and control functions. The convergence of the constructed iterative methods is proved, the implementation problems are discussed, and the numerical comparison of the methods is executed.
基金supported by National Natural Science Foundation of China under Grant Nos.52005447,72271222,71371170,71871203,L1924063Zhejiang Provincial Natural Science Foundation of China underGrant No.LQ21E050014Foundation of Zhejiang Education Committee under Grant No.Y201840056.
文摘Effective constrained optimization algorithms have been proposed for engineering problems recently.It is common to consider constraint violation and optimization algorithm as two separate parts.In this study,a pbest selection mechanism is proposed to integrate the current mutation strategy in constrained optimization problems.Based on the improved pbest selection method,an adaptive differential evolution approach is proposed,which helps the population jump out of the infeasible region.If all the individuals are infeasible,the top 5%of infeasible individuals are selected.In addition,a modified truncatedε-level method is proposed to avoid trapping in infeasible regions.The proposed adaptive differential evolution approach with an improvedεconstraint processmechanism(IεJADE)is examined on CEC 2006 and CEC 2010 constrained benchmark function series.Besides,a standard IEEE-30 bus test system is studied on the efficiency of the IεJADE.The numerical analysis verifies the IεJADE algorithm is effective in comparisonwith other effective algorithms.
基金Project supported by the National Natural Science Foundation of China(No.11472067)
文摘In this paper, the shallow water problem is discussed. By treating the incompressible condition as the constraint, a constrained Hamilton variational principle is presented for the shallow water problem. Based on the constrained Hamilton variational principle, a shallow water equation based on displacement and pressure (SWE-DP) is developed. A hybrid numerical method combining the finite element method for spa- tial discretization and the Zu-class method for time integration is created for the SWE- DP. The correctness of the proposed SWE-DP is verified by numerical comparisons with two existing shallow water equations (SWEs). The effectiveness of the hybrid numerical method proposed for the SWE-DP is also verified by numerical experiments. Moreover, the numerical experiments demonstrate that the Zu-class method shows excellent perfor- mance with respect to simulating the long time evolution of the shallow water.