The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not o...The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not only on rank but also on the composition,distribution,and combination of the macerals.Unlike the proximate and ultimate analyses,determining the macerals in coal involves the use of sophisticated microscopic instrumentation and expertise.In this study,an attempt was made to predict the amount of macerals(vitrinite,inertinite,and liptinite)and total mineral matter from the Witbank Coalfields samples using the multiple input single output white-box artificial neural network(MISOWB-ANN),gene expression programming(GEP),multiple linear regression(MLR),and multiple nonlinear regression(MNLR).The predictive models obtained from the multiple soft computing models adopted are contrasted with one another using difference,efficiency,and composite statistical indicators to examine the appropriateness of the models.The MISOWB-ANN provides a more reliable predictive model than the other three models with the lowest difference and highest efficiency and composite statistical indicators.展开更多
Real-time prediction of ship motions is crucial for ensuring the safety of offshore activities.In this study,we investigate the performance of the reservoir computing(RC)model in predicting the motions of a ship saili...Real-time prediction of ship motions is crucial for ensuring the safety of offshore activities.In this study,we investigate the performance of the reservoir computing(RC)model in predicting the motions of a ship sailing in irregular waves,comparing it with the long short-term memory(LSTM),bidirectional LSTM(BiLSTM),and gated recurrent unit(GRU)networks.The model tests are carried out in a towing tank to generate the datasets for training and testing the machine learning models.First,we explore the performance of machine learning models trained solely on motion data.It is found that the RC model outperforms the L STM,BiL STM,and GRU networks in both accuracy and efficiency for predicting ship motions.Besides,we investigate the performance of the RC model trained using the historical motion and wave elevation data.It is shown that,compared with the RC model trained solely on motion data,the RC model trained on the motion and wave elevation data can significantly improve the motion prediction accuracy.This study validates the effectiveness and efficiency of the RC model in ship motion prediction during sailing and highlights the utility of wave elevation data in enhancing the RC model’s prediction accuracy.展开更多
The underlying electrophysiological mechanisms and clinical treatments of cardiovascular diseases,which are the most common cause of morbidity and mortality worldwide,have gotten a lot of attention and been widely exp...The underlying electrophysiological mechanisms and clinical treatments of cardiovascular diseases,which are the most common cause of morbidity and mortality worldwide,have gotten a lot of attention and been widely explored in recent decades.Along the way,techniques such as medical imaging,computing modeling,and artificial intelligence(AI)have always played significant roles in above studies.In this article,we illustrated the applications of AI in cardiac electrophysiological research and disease prediction.We summarized general principles of AI and then focused on the roles of AI in cardiac basic and clinical studies incorporating magnetic resonance imaging and computing modeling techniques.The main challenges and perspectives were also analyzed.展开更多
After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtuali...After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtualization. This study also compares Microsoft, Trend Micro, and the proposed unified cloud computing architecture to show that the proposed unified framework of the cloud computing service model is comprehensive and appropriate for the current complexities of businesses. The findings of this study can contribute to the knowledge for academics and practitioners to understand, assess, and analyze a cloud computing service application.展开更多
Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into accou...Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into account when they are employed. It is significant to build a good model that can express the forgetting effect well for application researches due to its promising prospects in brain-inspired computing. Some models are proposed to represent the forgetting effect but do not work well. In this paper, we present a novel window function, which has good performance in a drift model. We analyze the deficiencies of the previous drift diffusion models for the forgetting effect and propose an improved model. Moreover,the improved model is exploited as a synapse model in spiking neural networks to recognize digit images. Simulation results show that the improved model overcomes the defects of the previous models and can be used as a synapse model in brain-inspired computing due to its synaptic characteristics. The results also indicate that the improved model can express the forgetting effect better when it is employed in spiking neural networks, which means that more appropriate evaluations can be obtained in applications.展开更多
The fully anisotropic molecular overall tumbling model with methyl conformation jumps internal rotation among three equivalent sites is proposed,the overall tumbling rotation rates and the methyl internal rotation rat...The fully anisotropic molecular overall tumbling model with methyl conformation jumps internal rotation among three equivalent sites is proposed,the overall tumbling rotation rates and the methyl internal rotation rates of ponicidin are computed with this model from ~C relaxation parameters.展开更多
Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieve...Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieved,where critical technical gaps remain,and where future deployments should be integrated.Using a transparent protocol-driven screening process,we reviewed 1589 records and retained 101 peer-reviewed journal and conference articles(2021–2025)that explicitly frame their contributions within a transport-oriented metaverse.Our reviewreveals a predominantly exploratory evidence base.Among the 101 studies reviewed,17(16.8%)apply fuzzymulticriteria decision-making,36(35.6%)feature digital-twin visualizations or simulation-based testbeds,9(8.9%)present hardware-in-the-loop or field pilots,and only 4(4.0%)report performance metrics such as latency,throughput,or safety under realistic network conditions.Over time,the literature evolves fromearly conceptual sketches(2021–2022)through simulation-centered frameworks(2023)to nascent engineering prototypes(2024–2025).To clarify persistent gaps,we synthesize findings into four foundational layers—geometry and rendering,distributed synchronization,cryptographic integrity,and human factors—enumerating essential algorithms(homogeneous 4×4 transforms,Lamport clocks,Raft consensus,Merkle proofs,sweep-and-prune collision culling,Q-learning,and real-time ergonomic feedback loops).A worked bus-fleet prototype illustrates how blockchain-based ticketing,reinforcement learning-optimized traffic signals,and extended reality dispatch can be integrated into a live digital twin.This prototype is supported by a threephase rollout strategy.Advancing the transport metaverse from blueprint to operation requires open data schemas,reproducible edge–cloud performance benchmarks,cross-disciplinary cyber-physical threat models,and city-scale sandboxes that apply their mathematical foundations in real-world settings.展开更多
Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite ...Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.展开更多
This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving ...This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving average behavior—SARMA(1,1)L under exponential white noise.Unlike previous works that rely on simplified models such as AR(1)or assume independence,this research derives for the first time an exact two-sided Average Run Length(ARL)formula for theModified EWMAchart under SARMA(1,1)L conditions,using a mathematically rigorous Fredholm integral approach.The derived formulas are validated against numerical integral equation(NIE)solutions,showing strong agreement and significantly reduced computational burden.Additionally,a performance comparison index(PCI)is introduced to assess the chart’s detection capability.Results demonstrate that the proposed method exhibits superior sensitivity to mean shifts in autocorrelated environments,outperforming existing approaches.The findings offer a new,efficient framework for real-time quality control in complex seasonal processes,with potential applications in environmental monitoring and intelligent manufacturing systems.展开更多
In quadrupeds,the cervical and lumbar circuits work together to achieve the speed-dependent gait expression.While most studies have focused on how local lumbar circuits regulate limb coordination and gaits,relatively ...In quadrupeds,the cervical and lumbar circuits work together to achieve the speed-dependent gait expression.While most studies have focused on how local lumbar circuits regulate limb coordination and gaits,relatively few studies are known about cervical circuits and even less about locomotor gaits.We use the previously published models by Danner et al.(DANNER,S.M.,SHEVTSOVA,N.A.,FRIGON,A.,and RYBAK,I.A.Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds.e Life,6,e31050(2017))as a basis,and modify it by proposing an asymmetric organization of cervical and lumbar circuits.First,the model reproduces the typical speed-dependent gait expression in mice and more biologically appropriate locomotor parameters,including the gallop gait,locomotor frequencies,and limb coordination of the forelimbs.Then,the model replicates the locomotor features regulated by the M-current.The walk frequency increases with the M-current without affecting the interlimb coordination or gaits.Furthermore,the model reveals the interaction mechanism between the brainstem drive and ionic currents in regulating quadrupedal locomotion.Finally,the model demonstrates the dynamical properties of locomotor gaits.Trot and bound are identified as attractor gaits,walk as a semi-attractor gait,and gallop as a transitional gait,with predictable transitions between these gaits.The model suggests that cervical-lumbar circuits are asymmetrically recruited during quadrupedal locomotion,thereby providing new insights into the neural control of speed-dependent gait expression.展开更多
Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runa...Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runaway is the key scientific problem in battery safety research,which can cause fire and even lead to battery explosion under impact loading.In this work,a detailed computational model simulating the mechanical deformation and predicting the short-circuit onset of the 18,650 cylindrical battery is established.The detailed computational model,including the anode,cathode,separator,winding,and battery casing,is then developed under the indentation condition.The failure criteria are subsequently established based on the force–displacement curve and the separator failure.Two methods for improving the anti-short circuit ability are proposed.Results show the three causes of the short circuit and the failure sequence of components and reveal the reason why the fire is more serious under dynamic loading than under quasi-static loading.展开更多
Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the...Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the sufficient content of Si is critical for achieving these favorable performances,while excessive Si addition will result in mechanical brittleness.Herein,both physical experiments and finite element(FE)simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys.Four typical states of Si-containing Ti alloys(solid solution state,hypoeutectoid state,near-eutectoid state,hypereutectoid state)with varying Si content(0.3-1.2 wt.%)were fabricated via in-situ alloying spark plasma sintering.Experimental results indicate that in-situ alloying of 0.6 wt.%Si enhances the alloy’s strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti_(5)Si_(3)particles,while higher content of Si(0.9 and 1.2 wt.%)results in coarser primary Ti_(5)Si_(3)agglomerations,deteriorating the ductility.FE simulations support these findings,highlighting the finer and more uniformly distributed Ti_(5)Si_(3)particles contribute to less stress concentration and promote uniform deformation across the matrix,while agglomerated Ti_(5)Si_(3)particles result in increased local stress concentrations,leading to higher chances of particle fracture and reduced ductility.This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Si-containing Ti alloys.展开更多
In order to help athletes optimize their performances in competitions while prevent overtraining and the risk of overuse injuries,it is important to develop science-based strategies for optimally designing training pr...In order to help athletes optimize their performances in competitions while prevent overtraining and the risk of overuse injuries,it is important to develop science-based strategies for optimally designing training programs.The purpose of the present study is to develop a novel method by the combined use of optimal control theory and a training-performance model for designing optimal training programs,with the hope of helping athletes achieve the best performance exactly on the competition day while properly manage training load during the training course for preventing overtraining.The training-performance model used in the proposed optimal control framework is a conceptual extension of the Banister impulse-response model that describes the dynamics of performance,training load(served as the control variable),fitness(the overall positive effects on performance),and fatigue(the overall negative effects on performance).The objective functional of the proposed optimal control framework is to maximize the fitness and minimize the fatigue on the competition day with the goal of maximizing the performance on the competition day while minimizing the cumulative training load during the training course.The Forward-Backward Sweep Method is used to solve the proposed optimal control framework to obtain the optimal solutions of performance,training load,fitness,and fatigue.The simulation results show that the performance on the competition day is higher while the cumulative training load during the training course is lower with using optimal control theory than those without,successfully showing the feasibility and benefits of using the proposed optimal control framework to design optimal training programs for helping athletes achieve the best performance exactly on the competition day while properly manage training load during the training course for preventing overtraining.The present feasibility study lays the foundation of the combined use of optimal control theory and training-performance models to design personalized optimal training programs in real applications in athletic training and sports science for helping athletes achieve the best performances in competitions while prevent overtraining and the risk of overuse injuries.展开更多
Unravelling the source of quantum computing power has been a major goal in the field of quantum information science.In recent years,the quantum resource theory(QRT)has been established to characterize various quantum ...Unravelling the source of quantum computing power has been a major goal in the field of quantum information science.In recent years,the quantum resource theory(QRT)has been established to characterize various quantum resources,yet their roles in quantum computing tasks still require investigation.The so-called universal quantum computing model(UQCM),e.g.the circuit model,has been the main framework to guide the design of quantum algorithms,creation of real quantum computers etc.In this work,we combine the study of UQCM together with QRT.We find,on one hand,using QRT can provide a resource-theoretic characterization of a UQCM,the relation among models and inspire new ones,and on the other hand,using UQCM offers a framework to apply resources,study relation among these resources and classify them.We develop the theory of universal resources in the setting of UQCM,and find a rich spectrum of UQCMs and the corresponding universal resources.Depending on a hierarchical structure of resource theories,we find models can be classified into families.In this work,we study three natural families of UQCMs in detail:the amplitude family,the quasi-probability family,and the Hamiltonian family.They include some well known models,like the measurement-based model and adiabatic model,and also inspire new models such as the contextual model that we introduce.Each family contains at least a triplet of models,and such a succinct structure of families of UQCMs offers a unifying picture to investigate resources and design models.It also provides a rigorous framework to resolve puzzles,such as the role of entanglement versus interference,and unravel resource-theoretic features of quantum algorithms.展开更多
In order to improve the concurrent access performance of the web-based spatial computing system in cluster,a parallel scheduling strategy based on the multi-core environment is proposed,which includes two levels of pa...In order to improve the concurrent access performance of the web-based spatial computing system in cluster,a parallel scheduling strategy based on the multi-core environment is proposed,which includes two levels of parallel processing mechanisms.One is that it can evenly allocate tasks to each server node in the cluster and the other is that it can implement the load balancing inside a server node.Based on the strategy,a new web-based spatial computing model is designed in this paper,in which,a task response ratio calculation method,a request queue buffer mechanism and a thread scheduling strategy are focused on.Experimental results show that the new model can fully use the multi-core computing advantage of each server node in the concurrent access environment and improve the average hits per second,average I/O Hits,CPU utilization and throughput.Using speed-up ratio to analyze the traditional model and the new one,the result shows that the new model has the best performance.The performance of the multi-core server nodes in the cluster is optimized;the resource utilization and the parallel processing capabilities are enhanced.The more CPU cores you have,the higher parallel processing capabilities will be obtained.展开更多
With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these...With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.展开更多
The gastrointestinal (GI) tract is the system of organs within multi-cellular animals that takes in food, digests it to extract energy and nutrients, and expels the remaining waste. The various patterns of GI tract fu...The gastrointestinal (GI) tract is the system of organs within multi-cellular animals that takes in food, digests it to extract energy and nutrients, and expels the remaining waste. The various patterns of GI tract function are generated by the integrated behaviour of multiple tissues and cell types. A thorough study of the GI tract requires understanding of the interactions between cells, tissues and gastrointestinal organs in health and disease. This depends on knowledge, not only of numerous cellular ionic current mechanisms and signal transduction pathways, but also of large scale GI tissue structures and the special distribution of the nervous network. A unique way of coping with this explosion in complexity is mathematical and computational modelling; providing a computational framework for the multilevel modelling and simulation of the human gastrointestinal anatomy and physiology. The aim of this review is to describe the current status of biomechanical modelling work of the GI tract in humans and animals, which can be further used to integrate the physiological, anatomical and medical knowledge of the GI system. Such modelling will aid research and ensure that medical professionals benefit, through the provision of relevant and precise information about the patient's condition and GI remodelling in animal disease models. It will also improve the accuracy and efficiency of medical procedures, which could result in reduced cost for diagnosis and treatment.展开更多
Magnesium alloys are highly attractive for the use as temporary implant materials,due to their high biocompatibility and biodegradability.However,the prediction of the degradation rate of the implants is difficult,the...Magnesium alloys are highly attractive for the use as temporary implant materials,due to their high biocompatibility and biodegradability.However,the prediction of the degradation rate of the implants is difficult,therefore,a large number of experiments are required.Computational modelling can aid in enabling the predictability,if sufficiently accurate models can be established.This work presents a generalized model of the degradation of pure magnesium in simulated body fluid over the course of 28 days considering uncertainty aspects.The model includes the computation of the metallic material thinning and is calibrated using the mean degradation depth of several experimental datasets simultaneously.Additionally,the formation and precipitation of relevant degradation products on the sample surface is modelled,based on the ionic composition of simulated body fluid.The computed mean degradation depth is in good agreement with the experimental data(NRMSE=0.07).However,the quality of the depth profile curves of the determined elemental weight percentage of the degradation products differs between elements(such as NRMSE=0.40 for phosphorus vs.NRMSE=1.03 for magnesium).This indicates that the implementation of precipitate formation may need further developments.The sensitivity analysis showed that the model parameters are correlated and which is related to the complexity and the high computational costs of the model.Overall,the model provides a correlating fit to the experimental data of pure Mg samples of different geometries degrading in simulated body fluid with reliable error estimation.展开更多
Cancer is a major stress for public well-being and is the most dreadful disease.The models used in the discovery of cancer treatment are continuously changing and extending toward advanced preclinical studies.Cancer m...Cancer is a major stress for public well-being and is the most dreadful disease.The models used in the discovery of cancer treatment are continuously changing and extending toward advanced preclinical studies.Cancer models are either naturally existing or artificially prepared experimental systems that show similar features with human tumors though the heterogeneous nature of the tumor is very familiar.The choice of the most fitting model to best reflect the given tumor system is one of the real difficulties for cancer examination.Therefore,vast studies have been conducted on the cancer models for developing a better understanding of cancer invasion,progression,and early detection.These models give an insight into cancer etiology,molecular basis,host tumor interaction,the role of microenvironment,and tumor heterogeneity in tumor metastasis.These models are also used to predict novel can-cer markers,targeted therapies,and are extremely helpful in drug development.In this review,the potential of cancer models to be used as a platform for drug screening and therapeutic discoveries are highlighted.Although none of the cancer models is regarded as ideal because each is associated with essential caveats that restraint its application yet by bridging the gap between preliminary cancer research and transla-tional medicine.However,they promise a brighter future for cancer treatment.展开更多
Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis proce...Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis process.This paper presents an in vivo experiment combining motion capture system and plantar pressure measure platform to validate a three-dimensional finite element model of human foot.The Magnetic Resonance Imaging(MRI)slices for the foot modeling and the experimental data for validation were both collected from the same volunteer subject.The validated components included the comparison of static model predictions of plantar force,plantar pressure and foot surface deformation during six loading conditions,to equivalent measured data.During the whole experiment,foot surface deformation,plantar force and plantar pressure were recorded simultaneously during six different loaded standing conditions.The predictions of the current FE model were in good agreement with these experimental results.展开更多
文摘The distribution of the various organic and inorganic constituents and their influences on the combustion of coal has been comprehensively studied.However,the combustion characteristics of pulverized coal depend not only on rank but also on the composition,distribution,and combination of the macerals.Unlike the proximate and ultimate analyses,determining the macerals in coal involves the use of sophisticated microscopic instrumentation and expertise.In this study,an attempt was made to predict the amount of macerals(vitrinite,inertinite,and liptinite)and total mineral matter from the Witbank Coalfields samples using the multiple input single output white-box artificial neural network(MISOWB-ANN),gene expression programming(GEP),multiple linear regression(MLR),and multiple nonlinear regression(MNLR).The predictive models obtained from the multiple soft computing models adopted are contrasted with one another using difference,efficiency,and composite statistical indicators to examine the appropriateness of the models.The MISOWB-ANN provides a more reliable predictive model than the other three models with the lowest difference and highest efficiency and composite statistical indicators.
基金supported by National Natural Science Foundation of China(No.12272230)Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University(No.21TQ1400202).
文摘Real-time prediction of ship motions is crucial for ensuring the safety of offshore activities.In this study,we investigate the performance of the reservoir computing(RC)model in predicting the motions of a ship sailing in irregular waves,comparing it with the long short-term memory(LSTM),bidirectional LSTM(BiLSTM),and gated recurrent unit(GRU)networks.The model tests are carried out in a towing tank to generate the datasets for training and testing the machine learning models.First,we explore the performance of machine learning models trained solely on motion data.It is found that the RC model outperforms the L STM,BiL STM,and GRU networks in both accuracy and efficiency for predicting ship motions.Besides,we investigate the performance of the RC model trained using the historical motion and wave elevation data.It is shown that,compared with the RC model trained solely on motion data,the RC model trained on the motion and wave elevation data can significantly improve the motion prediction accuracy.This study validates the effectiveness and efficiency of the RC model in ship motion prediction during sailing and highlights the utility of wave elevation data in enhancing the RC model’s prediction accuracy.
基金the Hainan Provincial Natural Science Foundation of China(No.820RC625)the National Natural Science Foundation of China(No.82060332)。
文摘The underlying electrophysiological mechanisms and clinical treatments of cardiovascular diseases,which are the most common cause of morbidity and mortality worldwide,have gotten a lot of attention and been widely explored in recent decades.Along the way,techniques such as medical imaging,computing modeling,and artificial intelligence(AI)have always played significant roles in above studies.In this article,we illustrated the applications of AI in cardiac electrophysiological research and disease prediction.We summarized general principles of AI and then focused on the roles of AI in cardiac basic and clinical studies incorporating magnetic resonance imaging and computing modeling techniques.The main challenges and perspectives were also analyzed.
文摘After a comprehensive literature review and analysis, a unified cloud computing framework is proposed, which comprises MapReduce, a vertual machine, Hadoop distributed file system (HDFS), Hbase, Hadoop, and virtualization. This study also compares Microsoft, Trend Micro, and the proposed unified cloud computing architecture to show that the proposed unified framework of the cloud computing service model is comprehensive and appropriate for the current complexities of businesses. The findings of this study can contribute to the knowledge for academics and practitioners to understand, assess, and analyze a cloud computing service application.
基金Project supported by the National Natural Science Foundation of China(Grant No.61332003)High Performance Computing Laboratory,China(Grant No.201501-02)
文摘Memristors, as memristive devices, have received a great deal of interest since being fabricated by HP labs. The forgetting effect that has significant influences on memristors' performance has to be taken into account when they are employed. It is significant to build a good model that can express the forgetting effect well for application researches due to its promising prospects in brain-inspired computing. Some models are proposed to represent the forgetting effect but do not work well. In this paper, we present a novel window function, which has good performance in a drift model. We analyze the deficiencies of the previous drift diffusion models for the forgetting effect and propose an improved model. Moreover,the improved model is exploited as a synapse model in spiking neural networks to recognize digit images. Simulation results show that the improved model overcomes the defects of the previous models and can be used as a synapse model in brain-inspired computing due to its synaptic characteristics. The results also indicate that the improved model can express the forgetting effect better when it is employed in spiking neural networks, which means that more appropriate evaluations can be obtained in applications.
文摘The fully anisotropic molecular overall tumbling model with methyl conformation jumps internal rotation among three equivalent sites is proposed,the overall tumbling rotation rates and the methyl internal rotation rates of ponicidin are computed with this model from ~C relaxation parameters.
基金financial support from the Centro de Matematica da Universidade doMinho(CMAT/UM),through project UID/00013.
文摘Metaverse technologies are increasingly promoted as game-changers in transport planning,connectedautonomous mobility,and immersive traveler services.However,the field lacks a systematic review of what has been achieved,where critical technical gaps remain,and where future deployments should be integrated.Using a transparent protocol-driven screening process,we reviewed 1589 records and retained 101 peer-reviewed journal and conference articles(2021–2025)that explicitly frame their contributions within a transport-oriented metaverse.Our reviewreveals a predominantly exploratory evidence base.Among the 101 studies reviewed,17(16.8%)apply fuzzymulticriteria decision-making,36(35.6%)feature digital-twin visualizations or simulation-based testbeds,9(8.9%)present hardware-in-the-loop or field pilots,and only 4(4.0%)report performance metrics such as latency,throughput,or safety under realistic network conditions.Over time,the literature evolves fromearly conceptual sketches(2021–2022)through simulation-centered frameworks(2023)to nascent engineering prototypes(2024–2025).To clarify persistent gaps,we synthesize findings into four foundational layers—geometry and rendering,distributed synchronization,cryptographic integrity,and human factors—enumerating essential algorithms(homogeneous 4×4 transforms,Lamport clocks,Raft consensus,Merkle proofs,sweep-and-prune collision culling,Q-learning,and real-time ergonomic feedback loops).A worked bus-fleet prototype illustrates how blockchain-based ticketing,reinforcement learning-optimized traffic signals,and extended reality dispatch can be integrated into a live digital twin.This prototype is supported by a threephase rollout strategy.Advancing the transport metaverse from blueprint to operation requires open data schemas,reproducible edge–cloud performance benchmarks,cross-disciplinary cyber-physical threat models,and city-scale sandboxes that apply their mathematical foundations in real-world settings.
基金supported by the Major Research Instrument Development Project of the National Natural Science Foundation of China(82327810)the Foundation of the President of Hebei University(XZJJ202202)the Hebei Province“333 talent project”(A202101058).
文摘Within the prefrontal-cingulate cortex,abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions,contributing to the development of mental disorders such as depression.Despite this understanding,the neural circuit mechanisms underlying this phenomenon remain elusive.In this study,we present a biophysical computational model encompassing three crucial regions,including the dorsolateral prefrontal cortex,subgenual anterior cingulate cortex,and ventromedial prefrontal cortex.The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes.The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks.Furthermore,our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex,and network functionality was restored through intervention in the dorsolateral prefrontal cortex.This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.
基金financially by the National Research Council of Thailand(NRCT)under Contract No.N42A670894.
文摘This study presents an innovative development of the exponentially weighted moving average(EWMA)control chart,explicitly adapted for the examination of time series data distinguished by seasonal autoregressive moving average behavior—SARMA(1,1)L under exponential white noise.Unlike previous works that rely on simplified models such as AR(1)or assume independence,this research derives for the first time an exact two-sided Average Run Length(ARL)formula for theModified EWMAchart under SARMA(1,1)L conditions,using a mathematically rigorous Fredholm integral approach.The derived formulas are validated against numerical integral equation(NIE)solutions,showing strong agreement and significantly reduced computational burden.Additionally,a performance comparison index(PCI)is introduced to assess the chart’s detection capability.Results demonstrate that the proposed method exhibits superior sensitivity to mean shifts in autocorrelated environments,outperforming existing approaches.The findings offer a new,efficient framework for real-time quality control in complex seasonal processes,with potential applications in environmental monitoring and intelligent manufacturing systems.
基金Project supported by the National Natural Science Foundation of China(Nos.12272092 and 12332004)。
文摘In quadrupeds,the cervical and lumbar circuits work together to achieve the speed-dependent gait expression.While most studies have focused on how local lumbar circuits regulate limb coordination and gaits,relatively few studies are known about cervical circuits and even less about locomotor gaits.We use the previously published models by Danner et al.(DANNER,S.M.,SHEVTSOVA,N.A.,FRIGON,A.,and RYBAK,I.A.Computational modeling of spinal circuits controlling limb coordination and gaits in quadrupeds.e Life,6,e31050(2017))as a basis,and modify it by proposing an asymmetric organization of cervical and lumbar circuits.First,the model reproduces the typical speed-dependent gait expression in mice and more biologically appropriate locomotor parameters,including the gallop gait,locomotor frequencies,and limb coordination of the forelimbs.Then,the model replicates the locomotor features regulated by the M-current.The walk frequency increases with the M-current without affecting the interlimb coordination or gaits.Furthermore,the model reveals the interaction mechanism between the brainstem drive and ionic currents in regulating quadrupedal locomotion.Finally,the model demonstrates the dynamical properties of locomotor gaits.Trot and bound are identified as attractor gaits,walk as a semi-attractor gait,and gallop as a transitional gait,with predictable transitions between these gaits.The model suggests that cervical-lumbar circuits are asymmetrically recruited during quadrupedal locomotion,thereby providing new insights into the neural control of speed-dependent gait expression.
基金supported by the National Natural Science Foundation of China(Grant Numbers:12172149 and 12172151).
文摘Electric vehicles,powered by electricity stored in a battery pack,are developing rapidly due to the rapid development of energy storage and the related motor systems being environmentally friendly.However,thermal runaway is the key scientific problem in battery safety research,which can cause fire and even lead to battery explosion under impact loading.In this work,a detailed computational model simulating the mechanical deformation and predicting the short-circuit onset of the 18,650 cylindrical battery is established.The detailed computational model,including the anode,cathode,separator,winding,and battery casing,is then developed under the indentation condition.The failure criteria are subsequently established based on the force–displacement curve and the separator failure.Two methods for improving the anti-short circuit ability are proposed.Results show the three causes of the short circuit and the failure sequence of components and reveal the reason why the fire is more serious under dynamic loading than under quasi-static loading.
基金supported by the Natural Science Foundation of Hunan Province(Grant No.2023JJ40353)the National Key Research and Development Program of China(No.2019YFE03120001).
文摘Titanium-silicon(Ti-Si)alloy system shows significant potential for aerospace and automotive applications due to its superior specific strength,creep resistance,and oxidation resistance.For Si-containing Ti alloys,the sufficient content of Si is critical for achieving these favorable performances,while excessive Si addition will result in mechanical brittleness.Herein,both physical experiments and finite element(FE)simulations are employed to investigate the micro-mechanisms of Si alloying in tailoring the mechanical properties of Ti alloys.Four typical states of Si-containing Ti alloys(solid solution state,hypoeutectoid state,near-eutectoid state,hypereutectoid state)with varying Si content(0.3-1.2 wt.%)were fabricated via in-situ alloying spark plasma sintering.Experimental results indicate that in-situ alloying of 0.6 wt.%Si enhances the alloy’s strength and ductility simultaneously due to the formation of fine and uniformly dispersed Ti_(5)Si_(3)particles,while higher content of Si(0.9 and 1.2 wt.%)results in coarser primary Ti_(5)Si_(3)agglomerations,deteriorating the ductility.FE simulations support these findings,highlighting the finer and more uniformly distributed Ti_(5)Si_(3)particles contribute to less stress concentration and promote uniform deformation across the matrix,while agglomerated Ti_(5)Si_(3)particles result in increased local stress concentrations,leading to higher chances of particle fracture and reduced ductility.This study not only elucidates the micro-mechanisms of in-situ Si alloying for tailoring the mechanical properties of Ti alloys but also aids in optimizing the design of high-performance Si-containing Ti alloys.
基金funded by the National Science and Technology Council,grant number NSTC 113-2221-E-002-136-.
文摘In order to help athletes optimize their performances in competitions while prevent overtraining and the risk of overuse injuries,it is important to develop science-based strategies for optimally designing training programs.The purpose of the present study is to develop a novel method by the combined use of optimal control theory and a training-performance model for designing optimal training programs,with the hope of helping athletes achieve the best performance exactly on the competition day while properly manage training load during the training course for preventing overtraining.The training-performance model used in the proposed optimal control framework is a conceptual extension of the Banister impulse-response model that describes the dynamics of performance,training load(served as the control variable),fitness(the overall positive effects on performance),and fatigue(the overall negative effects on performance).The objective functional of the proposed optimal control framework is to maximize the fitness and minimize the fatigue on the competition day with the goal of maximizing the performance on the competition day while minimizing the cumulative training load during the training course.The Forward-Backward Sweep Method is used to solve the proposed optimal control framework to obtain the optimal solutions of performance,training load,fitness,and fatigue.The simulation results show that the performance on the competition day is higher while the cumulative training load during the training course is lower with using optimal control theory than those without,successfully showing the feasibility and benefits of using the proposed optimal control framework to design optimal training programs for helping athletes achieve the best performance exactly on the competition day while properly manage training load during the training course for preventing overtraining.The present feasibility study lays the foundation of the combined use of optimal control theory and training-performance models to design personalized optimal training programs in real applications in athletic training and sports science for helping athletes achieve the best performances in competitions while prevent overtraining and the risk of overuse injuries.
基金funded by the National Natural Science Foundation of China under Grants Nos.12047503 and 12105343.
文摘Unravelling the source of quantum computing power has been a major goal in the field of quantum information science.In recent years,the quantum resource theory(QRT)has been established to characterize various quantum resources,yet their roles in quantum computing tasks still require investigation.The so-called universal quantum computing model(UQCM),e.g.the circuit model,has been the main framework to guide the design of quantum algorithms,creation of real quantum computers etc.In this work,we combine the study of UQCM together with QRT.We find,on one hand,using QRT can provide a resource-theoretic characterization of a UQCM,the relation among models and inspire new ones,and on the other hand,using UQCM offers a framework to apply resources,study relation among these resources and classify them.We develop the theory of universal resources in the setting of UQCM,and find a rich spectrum of UQCMs and the corresponding universal resources.Depending on a hierarchical structure of resource theories,we find models can be classified into families.In this work,we study three natural families of UQCMs in detail:the amplitude family,the quasi-probability family,and the Hamiltonian family.They include some well known models,like the measurement-based model and adiabatic model,and also inspire new models such as the contextual model that we introduce.Each family contains at least a triplet of models,and such a succinct structure of families of UQCMs offers a unifying picture to investigate resources and design models.It also provides a rigorous framework to resolve puzzles,such as the role of entanglement versus interference,and unravel resource-theoretic features of quantum algorithms.
基金Supported by the China Postdoctoral Science Foundation(No.2014M552115)the Fundamental Research Funds for the Central Universities,ChinaUniversity of Geosciences(Wuhan)(No.CUGL140833)the National Key Technology Support Program of China(No.2011BAH06B04)
文摘In order to improve the concurrent access performance of the web-based spatial computing system in cluster,a parallel scheduling strategy based on the multi-core environment is proposed,which includes two levels of parallel processing mechanisms.One is that it can evenly allocate tasks to each server node in the cluster and the other is that it can implement the load balancing inside a server node.Based on the strategy,a new web-based spatial computing model is designed in this paper,in which,a task response ratio calculation method,a request queue buffer mechanism and a thread scheduling strategy are focused on.Experimental results show that the new model can fully use the multi-core computing advantage of each server node in the concurrent access environment and improve the average hits per second,average I/O Hits,CPU utilization and throughput.Using speed-up ratio to analyze the traditional model and the new one,the result shows that the new model has the best performance.The performance of the multi-core server nodes in the cluster is optimized;the resource utilization and the parallel processing capabilities are enhanced.The more CPU cores you have,the higher parallel processing capabilities will be obtained.
基金supported by the National Science Foundation of China under Grant 62271062 and 62071063by the Zhijiang Laboratory Open Project Fund 2020LCOAB01。
文摘With the rapid development of cloud computing,edge computing,and smart devices,computing power resources indicate a trend of ubiquitous deployment.The traditional network architecture cannot efficiently leverage these distributed computing power resources due to computing power island effect.To overcome these problems and improve network efficiency,a new network computing paradigm is proposed,i.e.,Computing Power Network(CPN).Computing power network can connect ubiquitous and heterogenous computing power resources through networking to realize computing power scheduling flexibly.In this survey,we make an exhaustive review on the state-of-the-art research efforts on computing power network.We first give an overview of computing power network,including definition,architecture,and advantages.Next,a comprehensive elaboration of issues on computing power modeling,information awareness and announcement,resource allocation,network forwarding,computing power transaction platform and resource orchestration platform is presented.The computing power network testbed is built and evaluated.The applications and use cases in computing power network are discussed.Then,the key enabling technologies for computing power network are introduced.Finally,open challenges and future research directions are presented as well.
基金Supported by A grant from US National Institute of Health with No. 1RO1DK072616-01A2Karen Elise Jensen Fond
文摘The gastrointestinal (GI) tract is the system of organs within multi-cellular animals that takes in food, digests it to extract energy and nutrients, and expels the remaining waste. The various patterns of GI tract function are generated by the integrated behaviour of multiple tissues and cell types. A thorough study of the GI tract requires understanding of the interactions between cells, tissues and gastrointestinal organs in health and disease. This depends on knowledge, not only of numerous cellular ionic current mechanisms and signal transduction pathways, but also of large scale GI tissue structures and the special distribution of the nervous network. A unique way of coping with this explosion in complexity is mathematical and computational modelling; providing a computational framework for the multilevel modelling and simulation of the human gastrointestinal anatomy and physiology. The aim of this review is to describe the current status of biomechanical modelling work of the GI tract in humans and animals, which can be further used to integrate the physiological, anatomical and medical knowledge of the GI system. Such modelling will aid research and ensure that medical professionals benefit, through the provision of relevant and precise information about the patient's condition and GI remodelling in animal disease models. It will also improve the accuracy and efficiency of medical procedures, which could result in reduced cost for diagnosis and treatment.
基金funding from the Helmholtz-Incubator project Uncertainty Quantification.
文摘Magnesium alloys are highly attractive for the use as temporary implant materials,due to their high biocompatibility and biodegradability.However,the prediction of the degradation rate of the implants is difficult,therefore,a large number of experiments are required.Computational modelling can aid in enabling the predictability,if sufficiently accurate models can be established.This work presents a generalized model of the degradation of pure magnesium in simulated body fluid over the course of 28 days considering uncertainty aspects.The model includes the computation of the metallic material thinning and is calibrated using the mean degradation depth of several experimental datasets simultaneously.Additionally,the formation and precipitation of relevant degradation products on the sample surface is modelled,based on the ionic composition of simulated body fluid.The computed mean degradation depth is in good agreement with the experimental data(NRMSE=0.07).However,the quality of the depth profile curves of the determined elemental weight percentage of the degradation products differs between elements(such as NRMSE=0.40 for phosphorus vs.NRMSE=1.03 for magnesium).This indicates that the implementation of precipitate formation may need further developments.The sensitivity analysis showed that the model parameters are correlated and which is related to the complexity and the high computational costs of the model.Overall,the model provides a correlating fit to the experimental data of pure Mg samples of different geometries degrading in simulated body fluid with reliable error estimation.
文摘Cancer is a major stress for public well-being and is the most dreadful disease.The models used in the discovery of cancer treatment are continuously changing and extending toward advanced preclinical studies.Cancer models are either naturally existing or artificially prepared experimental systems that show similar features with human tumors though the heterogeneous nature of the tumor is very familiar.The choice of the most fitting model to best reflect the given tumor system is one of the real difficulties for cancer examination.Therefore,vast studies have been conducted on the cancer models for developing a better understanding of cancer invasion,progression,and early detection.These models give an insight into cancer etiology,molecular basis,host tumor interaction,the role of microenvironment,and tumor heterogeneity in tumor metastasis.These models are also used to predict novel can-cer markers,targeted therapies,and are extremely helpful in drug development.In this review,the potential of cancer models to be used as a platform for drug screening and therapeutic discoveries are highlighted.Although none of the cancer models is regarded as ideal because each is associated with essential caveats that restraint its application yet by bridging the gap between preliminary cancer research and transla-tional medicine.However,they promise a brighter future for cancer treatment.
基金supported by the "Mechanical Virtual Human of China"project funded by the National Natural Science Foundation of China(30530230)further support was from the UK Royal Scoiety(Grant:IPJ/2006/R3)
文摘Reliable computational foot models offer an alternative means to enhance knowledge on the biomechanics of human foot. Model validation is one of the most critical aspects of the entire foot modeling and analysis process.This paper presents an in vivo experiment combining motion capture system and plantar pressure measure platform to validate a three-dimensional finite element model of human foot.The Magnetic Resonance Imaging(MRI)slices for the foot modeling and the experimental data for validation were both collected from the same volunteer subject.The validated components included the comparison of static model predictions of plantar force,plantar pressure and foot surface deformation during six loading conditions,to equivalent measured data.During the whole experiment,foot surface deformation,plantar force and plantar pressure were recorded simultaneously during six different loaded standing conditions.The predictions of the current FE model were in good agreement with these experimental results.